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Introduction
Nanotechnology is a field that has been developed some decades 

ago, since then it has been expanding rapidly; and it has gained the 
attention of many scientists [1-5]. Nanotechnology applies synthetic 
chemistry to fabricate Nano scale building blocks, which could 
be functional on their own, with other materials Recently, novel 
devices have been fabricated and used from nanomaterial, e.g. new 
processors, fuel cells, energy storage devices in batteries, LEDs and 
photo electrochemical cells [6-10]. In addition, bio nanotechnology 
is a science that made use of biological building blocks to fabricate 
useful tools at the Nano scale [11-18]. Furthermore, the detection of 
biomolecules is of immense potential in the direction of molecular 
sensing in addition to self-assembly [19-21]. Furthermore, other 
sophisticated structures like animal viruses plus bacteriophages could be 
assembled at the Nano scale, such bio-nanostructures recognition can 
lead to the "bottom up" assembly. Furthermore, bio-nanotechnology 
is the application of biological building blocks intended for the 
improvement of novel technologies on the Nano scale. Besides, bio-
nanotechnology is evidently not restricted to molecular functions; yet, 
they exhibit a broader capacity. Other functions of bio-nanotechnology 
include the applications of oligomers, peptide nanotubes, and metal 
nanowires. Indeed, bio nanotechnology is one of the key technologies 
of the 21st century that merges material science and biotechnology; it is 
currently being studied and optimized. This field involves the utilization 
of biological systems such as cells, cellular components, and proteins, 
to manufacture efficient nanostructures. Nanotechnology is the new 
utensil that explores bimolecular structures, functions and properties. 
Bio nanotechnology made it possible to determine structural elements 
of cells, molecular recognition and drug delivery [11-13,22-42] (Table 
1). In the same vein, gene therapy is a medical intervention that uses 
genes for the treatment or prevention of disease. If the gene of interest is 
delivered properly to the desired site, then this strategy would allow the 
direct insertion of a gene into a specific cell. Gene therapy has gained 
massive researchers’ interest because of its potential to be an alternative 
for surgery and drug treatments. Gene therapy have been applied to 

replace a mutated gene that causes disease, knocking out mutated genes, 
and introducing new genes into cells to help fight a disease [24,43,44]. 
Even though gene therapy could be a promising treatment option for 
a number of diseases, its safety is still negotiable. Therefore, different 
types of biocompatible nanoparticles have been used to deliver genes 
intended for gene therapy to overcome the disadvantages encountered 
with the traditional methods used for genetic material delivery. In this 
review we will shed the light on the types of nanoparticles that have 
been used to deliver genes intended for gene therapy [45-48]. Moreover, 
RNA interference (RNAi) is one of the most exciting and revolutionary 
new approaches to therapies that have attracted considerable amount 
of attention within the last few decades. It has been found that gene 
expression may be controlled at the level of messenger RNA via non-
coding RNAs. RNAi is an important pathway that leads to explicit 
gene silencing and down regulating. Non coding RNA may lead to the 
development of a new range of potentially thousands of therapeutics. 
If efficiently used, RNAi is considered as a potent therapeutic agent 
for different disease types including viral diseases and cancer. Plus, 
microRNA (miRNA) and small interfering RNA (siRNA) may be used 
as curative agents on their own, as they both adjust gene expression 
with high specificity [49-61]. A fare example of such an approach is in 
the treatment of cancer, whereby the siRNA may selectively increase 
the susceptibility of the cell to the low molecular weight anticancer 
agent housed in the same delivery system. It is interesting to note that 
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Type of Drug Delivery 
System

Trade Name Active Ingredient Breakthrough Disease Year of Approval 

PEGylated proteins Adagen® PEGylated adenosine deaminase Increased circulation time and 
reduced immunogenicity

Adenosine deaminase 
deficiency, Severe combined 
immunodeficiency disease

FDA 1990

Cimzia® PEGylated antibody Increases hydrodynamic radius, 
prolongs circulation and retention 

time, decreases proteolysis, 
decreases renal excretion

Crohn’s disease, rheumatoid 
arthritis

FDA 2008

 Nanocrystals Emend® Aprepitant as nanocrystal Increased bioavailability due to 
increased dissolution rate.

Emesis, antiemetic FDA 2003

Rapamune® Rapamycin (sirolimus) as 
nanocrystals formulated in tablets

  Immunosuppressant FDA 2002

Polymer-based nano-
formulations

Copaxone® Glatiramer peptide Glatiramer is thought to divert 
as a “decoy” an autoimmune 

response against myelin

Multiple Sclerosis FDA 1996/2014

Genexol® Paclitaxel Passive targeting via EPR effect Metastatic breast cancer, 
pancreatic cancer (IV)

South Korea 2001

Protein–drug 
conjugates

Abraxane® Nanoparticles formed by albumin 
with conjugated paclitaxel

Passive targeting via EPR effect 
and  may increase endothelial 

transcytosis

Metastatic breast cancer, non-
small-cell lung cancer (IV)

FDA 2005

Surfactant-based 
nano-formulations

Estrasorb™ Emulsion of estradiol in soybean 
oil, polysorbate 80, ethanol, and 

water

Increase drug solubilization Hormone replacement therapy 
during menopause 

FDA 2003

Metal-based nano-
formulations

NanoTherm® Aminosilane-coated 
superparamagnetic iron oxide 15 

nm nanoparticles

Thermal ablation Local ablation in glioblastoma, 
prostate, and pancreatic cancer 

(intratumoral)

Europe 2013

Virosomes Gendicine® Recombinant adenovirus 
expressing wildtype-p53

Targeted gene therapy Head and neck squamous cell 
carcinoma

People’s Republic of 
China 2003

  Rexin-G® Gene for dominant-negative 
mutant form of human cycline G1 

Targeted gene therapy Specificity 
achieved by targeting exposed 

collagen 

For all solid tumors Philippines 2007

Table 1: Few examples of FDA approved polymer nanoparticles based therapies.

such approaches may also benefit from appropriate sequential release 
of two types of agent, although this consideration is in its infancy and 
is currently secondary to the considerable engineering challenges 
associated with the development of such nanostructured systems 
(Figure 1 and Table 1). 

Challenges of delivery of therapeutic siRNA

SiRNA have great potential to be a leading therapeutic tool for 
several diseases. However, the major obstacle that stands in the way of 
realization of such therapies is the in vivo delivery of RNAi molecules, 
like the small interfering RNAs (siRNAs). Many intracellular and 
extracellular obstacles still need to be conquered in order to benefit 
from the full aptitude of this technology. The molecules are too 
impermeable and too metabolically labile to be delivered alone, hence 
it is essential to develop vectors with which these molecules may be 
both protected and facilitated in reaching the target site. 

First of all, siRNA stability is highly negotiable, due to the 
extracellular degradation by enzymes located in serum and tissues, 
resulting in a short life time of the bare siRNAs in serum that can 
go up to one hour [34]. Hence, the targeting of therapeutic siRNAs 
is extremely challenging, as the siRNA faces many barriers before 
reaching their target cells to act on the gene silencing. Additionally, 
when the siRNAs are in the cell cytoplasm, they become susceptible to 
deterioration as a result of their contact with the intracellular RNAses. 
Secondly, another issue that should be taken into account when 
dealing with therapeutic siRNA is the off target silencing. Sometimes 
the specific silencing may suppress other genes than the ones of 
interest. Resulting in major undesirable mutations of gene expression, 
therefore, analytical bioinformatics methods are recommended. At 
this stage, siRNA design promises to considerably minimize and 

ultimately eliminate off-target silencing. Also, siRNAs may trigger 
immune responses by activating interferon responses resulting in cell 
death. Immune response is different from one cell to another, which 
makes it hard to predict the in vivo behavior without running in vitro 
experiments first. An optimal delivery strategy for siRNAs would be 
one that guarantees targeted delivery and high stability, a method that 
can protect the delivered material from undesirable immune response. 
In this project we will focus on the synthesis of a bio compatible 
delivery system that can specifically target the delivery of siRNAs, 
protect it from elimination and increasing the chances of the medical 
applications of siRNAs therapies. A trend that is pertinent to these 
discussions is the use of Nano composite systems, whereby more than 
one vector (a complexing molecule, a lipid or a synthetic polymer) may 
be combined into a Nano particulate system in order to elicit more 
than one advantage in delivery.

Therapeutic siRNA

The field of RNA interference (RNAi) started to gain much interest, 
since it was uncovered by Fire and Mello, around two decades ago. The 
standard understanding of the gene regulation has been transformed 
after the functional studies performed on C. elegans, where it has 
been found that double stranded RNAs were the reason of the gene 
silencing in C. elegans [62-65]. Subsequently, siRNAs have been found 
in plants and showed to direct sequence-dependent endo nucleolytic 
cleavage of the mRNAs that they regulate in mammalian cells [66-
68]. Moreover, some years later Elbashir. had effectively utilized 
synthetic siRNAs for gene silencing and they were able to verify 
the basic siRNA structure, offering the basics for optimizing RNAi 
applications [69,70]. Ever since, selective silencing of genes became 
possible. Selective gene silencing can be achieved by controlling the 
endogenous RNAi pathway with synthetic assemblies. This technique 
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is becoming widely popular for the genetic functional studies, where 
it has resulted in promising therapeutic aptitude. However, the 
realization of using siRNAs as therapeutic agents is hindered by many 
challenges. siRNA Stability in serum is highly negotiable, siRNAs are 
liable to degradation by serum and tissue enzymes; resulting in a very 
short half-life ranging from several minutes to an hour [68,69]. In 
addition, microarray studies have shown that off-target silencing can 
be a result of the siRNA therapy, which leads to the suppression of non-
interest genes. Off-target silencing may cause dangerous mutations of 
gene expression and undesirable cellular transformations. It has been 
shown that most off-target silencing is a result of homology with six 
to seven nucleotides in the “seed region” of the siRNA sequence [71-
74]. Also the use of siRNAs as therapeutics has been limited due to the 
activation of unexpected immune responses, that can lead to cell death 
in vitro [75,76]. The immune responses differ from one cell to another. 
Therefore, the in vivo immune reactions cannot be anticipated based on 
the in vitro work. The in vivo delivery of genetic is the major challenge 
that faces scientist when developing siRNA based therapies [76,77]. 
Virus-based delivery systems have been considered as an efficient mean 
of siRNA delivery. However, it could not be taken any further due to 
its fatal side effects; virus delivery can stimulate mutations, and trigger 
immunogenic and inflammatory responses [78]. Hence, alternative no 
viral delivery systems have been developed to replace the viral delivery 
of siRNA. Other non-viral delivery systems include direct chemical 
modification of siRNA, nanoparticles, and targeting moieties.

Nanoparticles used in gene delivery

Polymer nanoparticles: Polymer nanoparticles (PNPs) deliver 
genes or therapeutic proteins including drugs which can either be 
dissolved or encapsulated within them forming a nanoparticle and 
a Nano capsule respectively. PNPs can also deliver proteins to the 
targeted cells by entrapping them within its structure forming a 
Nano sphere. The delivered therapeutic proteins or drugs act by 
altering defective proteins or genes in the patient’s cells. The size of 

the polymer nanoparticle could be tuned to enable these drugs and 
therapeutic protein to fit in. PNPs, like all nanoparticles are capable 
of regaining their size once inside the cell through the physiological 
change in pH. Figure 2 below represents the structure of polymer 
nanoparticles. PNPs have been utilized in drug delivery, where they 
have shown high biocompatibility and high encapsulation capacity. 
They are great candidates for gene delivery, because they are highly 
stable and they offer controlled release of active ingredients. Also, 
PNPs can be used for targeted delivery by surface modification, 
and they allow the delivery of combined active materials. PNPs are 
synthesized from non-toxic biodegradable, biocompatible polymers 
like, Chitosan, cyclodextrin, polyethylene mine (PEI), poly(lactic-co-
glycolic) acid (PLGA), and dendrimers [69,75]. These polymers can be 
used on their own to synthesize (PNPs) also; they could be combined 
together to get better properties of nanoparticles (Figure 2). PNPs 

 

Figure 1: Different drug delivery systems and their use in therapeutics.

 

Figure 2: The structure of polymer nanoparticles.
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technology has revolutionized the field of biology and health services. 
It has facilitated the development of new treatment methods with 
improved efficacy for treating diseases which had once been viewed 
as incurable like genetic, immunological and neural disorders [36]. 
In some cases, the delivered genes act by enhancing the functions of 
the cells. Polymer nanoparticles are used to overcome the various 
challenges that have been encountered in using gene therapy [79]. 
Some genes have relatively long base sequences which make it difficult 
for them to be delivered to the desired sites. To fit into the target cell, 
the DNA must be condensed into the Nano structures, to permit their 
internalization within the cells80. Moreover, the nucleases in the target 
cells may also degrade the DNA being delivered. And because the gene 
and the carrier are usually conjugated, their separation at the point of 
delivery is sometimes difficult. In some cases, gene silencing may also 
arise as the target cells may act against the delivered genes. Putnam 
et al. have demonstrated that using polycations such as polyline can 
overcome the DNA size barrier as it “can condense DNA into toroidal 
nanostructures” to sizes less than 150 nm which can internalized within 
the cell. Researchers have also identified various ways in overcoming 
the challenge of separation of the DNA from the carrier. Using 
nanoparticles to conjugate the DNA, researchers have developed an 
effective way to ensure that the genes are delivered to the targeted cells 
(Figure 3) Mohammedi have synthesized DNA-Chitosan nanoparticles 
to deliver DNA to the Lung Epithelial cells [80,81]. Also, in 2014 Tang 
have utilized chitosan based (PNPs) Trimethylated chitosan has been 
synthesized as gene delivery systems, TMC-g-PCL/DNA polyplexes 
have shown high uptake efficiency than PEI/DNA polyplexes [22,82]. 
Plus, Das et al. have utilized PEI based nanoparticles to deliver siRNA to 
STAT3 in lung cancer, in vitro and in vivo [81]. Other research groups 
have also synthesized chitosan as the main targeting nanoparticles for 
siRNA delivery to treat different diseases like, lung cancer, ovarian 
cancer, pancreatic cancer and hepatocellular carcinoma [22,81-90]. 
In 2015, Bishop have utilized polymer coated gold nanoparticles for 
DNA and siRNA delivery, where this type of inorganic nanoparticles 
have shown good results in gene silencing [91]. Colombo et al. have 
synthesized hybrid lipid-polymer nanoparticles for siRNA delivering 
[92]. While, other up to date studies have shown the improved cancer 
treatments obtained with co delivery [90-96] (Figure 4). 

Dendrimers for gene delivery: Dendrimers are 1-10 nm, three-
dimensional globular synthetic macromolecules. Dendrimers are 
highly branched and characterized by monodispersity [97-101]. 
Synthesis of dendrimers was first discovered by two groups: Buhleier 
who focused on the construction of low molecular weight amines, and 
Tomalia who developed the divergent method tosynthesisedendrimers 
[102]. Dendrimers architecture consists of the core, branches and 
many terminal functional groups. The core is an atom or a molecule 
at the centre of the dendrimers with at least two identical chemical 
functions. From the core, branches with repeated units originate and 
spread, by having at least one branch junction, to form generations. 
These branches end with terminal functional groups at the surface 
of the dendrimers, which dictate the properties of the dendrimer 
macromolecule [97] (Figure 5). The most well studied dendrimer is 
polyamidoamine (PAMAM), which is characterized by high solubility 
and reactivity due to the presence of empty internal cavities and 
numerous functional groups at its periphery [103]. The properties of 
dendrimers, such as monodispersity, well-defined structure and the 
extensive quantity of surface functional groups, made them valuable 
tools to be used in gene delivery [104] (Figure 5).

   
  

 

 

 

 

Figure 3: Schematic illustration of therapeutic siRNA loaded nanoparticle.

Figure 4: Illustration of the process of RNAi delivery using nanoparticles.

  
 

 
  

  

 
 

  
 

  
 

 
  

 
    

 
 

 
 

 
  

 
  

 
 
 

 

  

 
 
 

 

  
  

 

 
 
 

 

  
 

  

 

 
 

 
  

  
 

 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 
 

 

  
 

   

Figure 5: Structure of Dendrimers.
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Divergent and convergent methods of synthesis: Dendrimers 
are usually prepared using the divergent or the convergent method of 
synthesis. The divergent method of synthesis, developed by Tomalia, 
is a stepwise method starting from the core of the dendrimer and 
growing outwards towards the periphery. The multifunctional core 
reacts with the reactive group of monomer molecules giving the first 
dendrimer generation, This periphery molecule is then activated to 
react with the next set of monomers building up the dendrimer layer 
by layer (Figure 2) [105,106]. The multiplicity of the core depends 
on the number of molecules added to the core and is equal to the 
number of branches branching out of the core [107]. Polyamidoamine 
(PAMAM) dendrimers are prepared using this method of synthesis 
[105]. Problems that occur with the divergent method result from the 
side reactions and incomplete reactions of the end groups. These can 
be overcome by adding large excess quantities of the reagent to force 
the reactions to completion [106]. On the other hand, an advantage of 
the divergent methodliesin the ability to change the end groups of the 
periphery, which modifies the surface and properties of the dendrimer 
[105]. In contrast, structural uniformity is difficult to maintain with the 
divergent approach as the number of reactions increases exponentially 
with each step [108,109]. Hire demonstrated a divergent approach to 
synthesis “aliphatic ester dendrimersby anhydride coupling” using 
only a small excess of the reagent and only extraction and precipitation 
as a purification method. The convergent method of synthesis, 
developed by Hawker and Fréchet, is a stepwise method is initiated 
from the terminal groups and builds up towards the interior going to 
the core (Figure 4) [106]. This approach was developed to overcome 
weaknesses, such as the low reactivity, of the divergent method [105]. 
An advantage of the convergent method is the faster reaction rate due 
to the minimal reactive sites available during the proliferation process. 
Another advantage is an advanced purification process due to the large 
“molecular difference” between the end product and the reactant, 
which leads to an improved separation during purification [105]. On 
the other hand, the convergent method displays a disadvantage in the 
inability to produce high generations due to steric hindrance in the 
reaction between the dendrons and the core [110]. “Hypercores” and 
“branched monomers” is an advanced method that accelerates the rate 
of dendrimer synthesis and involves the pre-assembly of oligomeric 
species that are linked together to generate dendrimers. The “double 
exponential” is another approach, which begin with a single starting 
material to prepare monomers for both the divergent and convergent 
methods. These two products then react to give an “orthogonally 
protected trimer”, which acts as the repeating unit in this growth. 
Moreover, lego chemistry method was developed by Tomalia and 
Svenson to simplify the duration and cost of dendrimer synthesis. It 
involves the preparation of phosphorus dendrimers by employing 
of highly functionalized cores and branched monomers. This allows 
the multiplication of terminal functional groups from 48 to 250 in 
just one step [97,111]. The click chemistry method was developed to 
produce higher purity and yield compared to the divergent method. 
It involves the spontaneous synthesis of two monomeric units with 
complimentary functions avoiding the use of activating agents and 
reducing the duration of synthesis. This method was successful in the 
production of triazoledendrimers [111,112] (Figure 6).

Dendrimers for gene delivery: Dendrimers are a great tool for 
gene delivery as they can interact with DNA, RNA and antisense 
oligonucleotide through electrostatic interaction to form complexes 
that condense the nucleic acid [113]. Hyperbranched dendrimers are 
more suitable to be used as gene delivery tools than more structured 
dendrimers as their flexibility allows them to form more compact 

complexes with DNA [114]. Under specific physiological and chemical 
conditions, dendrimes form polycations, which are able to bind to 
the negatively charged nucleic acid. As this dendrimer-nucliec acid 
complex needs to cross the epithelia to get to its target, it is required to 
have a positive net charge to enable the cellular uptake of the complex 
through its binding to the negatively charged cell membrane. Generally, 
high generation dendrimers are more toxic than low generation 
dendrimers. Therefore, the major factors affecting the permeability of 
the dendrimer-gene complex are the surface charge, concentration, 
generation time and surface modifications [104] (Figure 7). The 
positively charged dendrimer-nucleic acid complex (dendriplex) binds 
to the negatively charged cell membrane and is taken up by endocytosis 
forming an endosome. The endosome destabilises due to the sponge 
effect of the dendrimer, releasing the nucleic acid to the cytoplasm. 
Nucleic acid is then taken up by the nucleus where it is replicated.

Polyamidoamine (PAMAM): The six-generation PAMAM 
dendrimers are widely used dendrimers as vectors for gene delivery. 
PAMAM structure shows a high density of amines in the periphery, which 
enables the condensation of nucleic acid. On the other hand, the inner 
amines enable efficient endosomal escape through the proton sponge 
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Figure 7: Dendrimers-mediated gene delivery.

 
Figure 6:  Methods of Synthesis of Dendrimers. a. Divergent synthesis begins 
from the core and builds up to the periphery. b. Convergent synthesis starts 
from the branches and builds up inwards toward the core [112].
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effect [115], which is the resistance of cationic carriers that comprise a 
secondary or tertiary amine group to endosomal acidification through 
the absorption of protons. These cationic dendrimers absorb protons 
to below the physiological pH, which in turn delays the lysosomal 
fusion to the endosome. This prevents the degradation of nucleic acid 
and allows the accumulation of counter-ions like Cl- in the endosome 
leading to the endosome rupture and the release of its content into the 
cytoplasm due to vesicular swelling [116]. According to Braun [117], 
dendrimers with higher generations show better gene transfer than 
those with lower generations [117]. However, higher generations of the 
PAMAM dendrimers show higher toxicity due to the increased non-
biodegradability. Nevertheless, it has been shown that six generations 
PAMAM dendrimers are the most efficient for gene delivery [104]. 
Modified PAMAM dendrimers are the most commonly used for 
the delivery of DNA and siRNA. A study by Tang showed that PEG 
(polyethyl glycol) conjugated PAMAM dendrimers has dramatically 
decreased cytotoxicities than non-PEG conjugated PMAM dendrimers. 
It also demonstrated that PEG-conjugated dendrimers protected 
siRNA from being digested and gave high transfection efficiency [118]. 
Although PEGylated, hyper branched PAMAM dendrimers showed a 
significant reduction in cytotoxicity, it also demonstrated a significant 
decrease in gene delivery efficiency compared to unmodified hyper 
branched PAMAM dendrimers. However, a mixed system that is 
composed of 30% modified (PEGylated) hyper branched PAMAM and 
70% unmodified hyper branched PAMAM dendrimers improves gene 
delivery efficiency significantly while maintaining low cytotoxicity 
[119]. Acetylation and internal quaternization of PAMAM dendrimers 
is another modification that has been shown to decrease cytotoxicity in 
addition to genotoxicity, formation of micronuclei, of the dendrimers. 
This modification resulted in a neutral surface dendrimer with cationic 
charges inside the dendrimer, however the conformed dendrimers 
resulted in the formation of condensed spherical SiRNA polyplex, 
which protects the nucleic acids from degredation and improved their 
cellular internalization [120]. 

Polypropylenimine (PPI): Polypropylenimine (PPI) dendrimers 
are ideally suited for DNA binding and gene delivery, as they are 
comprised of 100% protonable nitrogen [121]. Schatzlien showed 
that gene delivery using PPI dendrimers demonstrated preferential 
expression of genes in liver, as opposed to other organs, which facilitate 
the specific use of it, for example in targeted cancer therapy [122]. 
Moreover, it has been shown that modification of PPI dendrimers 
would provide more effective intracellular delivery of the gene. Kim 
has shown that conjugation of PPI with arginine resulted in low 
toxicity and high transfection efficiency [123]. Furthermore, PPI 
dendrimers has also been used for siRNA delivery as shown by Tartula. 
Where PPI dendrimers were condensed with siRNA to form particles, 
that are caged with dithiol, and coated with PEG exhibited reduced 
genotoxicity, increased siRNA cellular bioavailability and stability 
in plasma, which in turn provided efficient gene silencing [120,124]. 
Russ have shown that although the generation 2 (G2) plasmid DNA-
PPI complex (polyplex) demonstrated lower cytotoxicity than the G3 
polyplexes,polyplexes of G2 exhibited lower transfection efficiency 
than the G3 ones. Moreover, grafting the G2 and G3 PPI polyplex 
with oligoethyleninime(OIE) showed enhanced transfection efficiency 
compared to the unmodified counterpart [125]. 

Polyethylenimine (PEI): PEI dendrimers are water-soluble 
polymers that can interact with the DNA, because its positively charged, 
and protect DNA from degradation; which makes them a great delivery 
tool for siRNA and DNA [126], however some studies show that PEI 
is less effective in siRNA delivery due to the reduced electrostatic 

interaction resulted by the short length of siRNA. PEI exerts the proton 
sponge effect to release the nucleic acid into the cytoplasm [127]. In 
2008, Intra and Salem studied the gene transfection efficiency of PEI-
pDNA in vivo and in vitro and showed that the branched PEI-pDNA 
structures displayed greater efficiency in vitro, whereas linear PEI-
pDNA structures have shown a greater efficiency in vivo when injected 
intraperitoneally. Moreover, differences in PEI nitrogen: pDNA 
phosphate ratios also had an impact on transfection efficiency [126].

Other types of dendrimers: Glyodendrimers, which are 
dendrimers that are incorporated with carbohydrates, has shown 
a great potential in targeted gene delivery [104]. Cyclodextrins are 
cyclic oligosaccharides that are composed of a hydrophilic exterior 
and hydrophobic interior. Wada showed that mannose-conjugated 
α-cyclodextrins PAMAMs demonstrated high transfection efficiency 
in mouses’ kidney 12-hourpost intravenous administration, compared 
to the unmodified dendrimers and α-cyclodextrins. Efficient gene 
delivery in addition to low toxicitymakes it an ideal non-viral vector 
[128]. Moreover, Arima reviewed “sugar-appended” dendrimers and 
demonstrated that mannosylatedα-cyclodextrinsdendrimers exhibit 
high transfection efficiency possibly due to the increased protection of 
plasmid DNA from methylation compared to unmodified dendrimers. 
Additionaly increased gene activity displayed by galactosylatedα-
cyclodextrinsdendrimers may be due to intracellular trafficking and/or 
the stability of plasmid DNA [129]. Futhermore, peptide dendrimers, 
which are dendrimers that contain peptide bonds, have also been 
reported for gene delivery. A study by Luo synthesised poly(L-lysine)
dendrimers as vectors for gene transfection in vitro and showed that 
the dendrimer-pDNA complex protected pDNA from degradation 
by nucleases with an efficiency that is stronger than the commercially 
available branched PEI. When compared to PEI, generation 5 (G5) 
of the dendrimers displayed similar transfection efficiency but lower 
toxicity to cultured cells [130]. Moreover, Arginine functionalized 
peptide dendrimers, synthesized using click chemistry, also showed 
high transfection efficiency in vitro independent of serum compared to 
PEI, specially generation dendrimers which displayed high transfection 
efficiency in vitro and in vivo making it ideal for gene delivery [128]. 
Table 2 below lists some of the approved dendrimers based therapies, 
used in genetic material delivery (Table 2).

Liposomes for gene delivery: Liposomes are small vesicle-like 
structures that are formed by self-assembly through lipids energetic 
interactions. Each phospholipid consists of a hydrophobic hydrocarbon 
tails, hydrophilic head group and a linker bond that joins the 
hydrophilic head and hydrophobic tail [131-133]. Liposomes possess 
properties such as reduced toxicity, safe preparation and reduced risk 
of immunological rejection, which enable its use for non-viral gene 
delivery [134]. Cationic lipids, which attain amine groups in the polar 
head, are more commonly used for gene delivery whereas anionic 
liposomes uses are constricted to other therapeutic macromolecules, 
because the positive charge of the liposomes binds to the negatively 
charged nucleic acids much easier [132]. The use of cationic 
liposomes for gene delivery is advantageous as it is biodegradable 
after administration in vivo, biocompatible and its surface can be 
diversely modified when using pegylated lipids [135]. The lipoplex 
formation is mainly enhanced by electrostatic reactions linking the 
DNA phosphate backbone and the positively charged polar head 
group of the liposome [136]. The size of the lipoplexes is determined 
by the ratio of cationic lipid-to-DNA charge during preparation. 
Relatively neutral charge ratios with slight excessive positive charges 
result in the formation of large aggregates, whereas high positive or 
negative charges results in the formation of relatively small aggregates 
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[136,137]. The most commonly used cationic liposomes utilized for 
the delivery of nucleic acids include DOTMA, DOTAP and DC-Chol. 
First reported liposomes by Felgner was N-(1-(2,3-dioleyloxy)propyl)-
N,N,N trimethyl ammonium chloride) (DOTMA), which consists of a 
monovalent quaternarey amine head connected to two hydrocarbon 
tail via an ether group [134]. Subsequently, [1,2-bis(oleoyloxy)-
3-(trime- thylammonio)propane] (DOTAP), which consist of a 
quaternary amine group linked to a glycerol backbone and two oleoyl 
chains, was repored by Leventis and Silvius. The ester bonds in DOTAP 
provides biodegradability and reduce toxicity because ester bonds are 
hydrolysable [132]. Furthermore, the cholesterol based liposome, 
3β[N-(N’,N’-dimethylami-noethane)-carbamoyl]cholesterol(DC-
Chol), has been synthesized using cholesterol chains as hydrophobic 
tails as it provides stability and biocompatibility [132,138]. More 
recently, new cationic liposome , DODAG (N′,N′-dioctadecyl-N-4,8-
diaza-10-aminodecanoylglycine amide), has been reported for efficient 
transfection of pDNA to multiple cell lines including Hela cells [139]. 
Transfection efficiency of liposomes is affected by the net charge of 
the lipoplex in addition to the size of the lipoplex. It has been shown 
that relatively large liposomes (0.4-1.4 um) has a greater transfection 
efficiency than smaller liposomes [136-140]. Moreover, it has been 
proven that PEG modification of liposomes increases the stability of 
liposomes in blood and improves its pharmacokinetics and transfection 
efficiency [141]. This prolonged circulation time was shown to be 
influenced by the length of the acyl chain of the PEG lipid as shown 
by 142 that explained that longer acyl chains demonstrates a higher 
transfection efficiency than shorter acyl chains or unsaturated chains. 
PEG coating also lowers protein binding to the surface of the liposomes, 
which reduces uptake by macrophages. Higher blood circulation is 
also influenced by the molar percentage of PEG lipids, however higher 
percentage also hamper cellular uptake and cytoplasmic deposition of 
siRNA [142,143]. 

Magnetic nanoparticles: Paramagnetic nanoparticles have been 
used as drug carriers. Their accumulation is guided in target tissues 
using strong magnetic fields, and they has successfully used in cancer 
treatment. Similarly, the same technique has been applied to gene 

vectors; a high throughput magnetofecion was able to offer a new tool 
for gene therapy that overcomes the drawbacks of in vivo gene therapy. 
Magnetofecion (Figure 8) has improved the efficacy of conventional 
transfection methods in vitro and in vivo. The first application of 
magnetic nanoparticles in gene therapy was reported by Scherer et 
al. [143]. They have associated gene vectors with superparamagnetic 
iron oxide nanoparticles. In vitro and in vivo experiments have shown 
that gene delivery and targeting was enhanced by the magnetic force 
within the iron oxide nanoparticles. Moreover, in 2005 Morishita 
have incorporated magnetic nanoparticles into unique vectors called 
“HVJ-E (hem agglutinating virus of Japan-envelope)”, where the 
magnetic nanoparticles have improved the transfection efficiency in in 
vitro studies [141]. Advances in technology have recognized magnetic 
nanoparticles as therapeutically reliable delivery systems, that is able to 
both enhance transfection of cargo as well as allow for target specific 
delivery through external application of a magnetic gradient onto the 
desired area [144]. The term “magnetofection” coined by Scherer refers 
to this method of magnet-assist gene delivery [145,146]. The gene is 
joined to a magnetic particle or transporter, consisting of an iron-oxide 
encapsulated within a polymer or metallic shell [143]. Alternatively, the 
particle can be dispersed in a polymer matrix. The shell or matrix may 
then be functionalized through attaching amines, biotin, streptavidin or 
antibodies in order to achieve maximum efficiency. Nanoparticles used 
for in vitro reactions are layered with polyethylene mine (PEI), which 
is able to adhere to DNA by means of electromagnetic interaction. In 
addition, the highly positive charge of PEI also further supports DNA 
transfer into cells as well as promotes dissociation of DNA complexes 
from endosomes through a proton sponge effect that ruptures the 
endosome [147,148] which relies on coating iron oxide nanoparticles 
with cationic polymers and particularly poly-ethylenimine (PEI) [149]. 
The few studies mentioned above represent most of the work done 
combining gene therapy and magnetic nanoparticles. Although the 
previous studies have shown an enhancement in transfection, with 
such promising results, not many investigations have been reported 
recently (Figure 8). 

Gold nanoparticles: Gold nanoparticles (AuNPs), are known to be 

Dendrimer Commercially Available Applications

PAMAM STARBURST® dendrimers (Sigma 
Aldrich)

•  In vitro transfection of liver (HepG2) and colon (CT26) cells
• In vivo gene delivery
• In vitro transfection into mesenchymal stem cells
• Formation of stable PAMAM-transferrin conjugate to form stable dendriplexes with plasmid 
DNA and improved gene delivery to HeLa, HepG2 and CT26 cell lines.
•  Delivery of sticky siRNA in vivo and in vitro to prostate cancer model using triethanolamine 
(TEA)-core PAMAM dendrimer of generation five.

PPI
Astramol (Dutch State Mines (DSM) 
Netherlands and Aldrich Chemical 
Company)

• siRNA delivery
•  Successful gene expression in liver rather than other organs
•  Accumulation in tumor tissue and induction of tumor- specific gene expression
•  PPI-collagen conjugates used as a scaffold for corneal tissue engineering.
•  Generation 4 and 5 PPI dendrimers to knockdown mRNA in A549 human lung cancer cells

PEI  
•  Gold standard for plasmid DNA delivery
•  Delivery of short hairpin RNA (shRNA) to retinal ganglion cells
•  Pulmonary gene delivery in vivo

Glycodendrimers   •  In vivo transfection of mannose-conjugated α-cyclodextrins in mouse kidney 

PLL  
•  In vivo transfection of generation 6 PLL-plasmid injected intravenously in mice 
• In vitro transfection in different cells
• Effective knockdown of GAPDH in rat hepatoma (H4IIEC3) cells with low cytotoxicity.

Carbosilane   • 2G-NN16 and 2G-03NN24 carbosilanedendrimers in gene therapy of HIV infection

Table 2: Commercially available dendrimers used as vectors for gene therapy.
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appropriate gene delivery vehicles. The optical and physiocochemical 
properties that allow for easy transfection into cells as well as their 
unique biocompatibility that make them non-toxic. Moreover, 
AuNPs can be easily modified and custom made for optimum delivery 
and specificity. Several issues must be taken into consideration for 
successful gene delivery, particularly effective cargo condensation, 
cellular uptake, DNA stability and prevention of degradation from 
nucleases as well as efficient delivery of DNA into the nucleus for 
expression [147-151]. The very first studies used DNAs natural 
structure as a blue print for designing AuNPs that are able to fulfill 
the necessary requirements, using spherical gold nanoparticles that are 
functionalized with amino acids thus resembling histones in size, shape 
and surface area. Several studies have shown lysine coated AuNPs 
produce more potent transfection vectors, that are able to condense 
DNA; for instance NP-LysG1 proved to be~28 more successful than 
polylysineheadgroups in reporter assays [111,149,150,152,153]. The 
superiority of lysine Dendron-functionalized AuNPs as delivery 
vectors can be attributed to their biometric design that makes their 
size similar to that of nucleosome core proteins (~6 nm) as well as 
forming electrostatic bonds with the phosphate backbone of DNA 
[149]. Modification of head groups attached to nanoparticles also serve 
to protect DNA from degradation cationic quaternary and trimythl 
ammonium-functionalized nanoparticles (NP-TMA) protected 
electrostatically bound plasmid DNA from DNase digestion. Most 
importantly, these additions are safe and display no cytotoxicity or 
unwanted immune responses [154,155]. The control of the transfection 
and release of nucleic acids, has been achieved by binding gold-thiolate 
on the surface of the AuNPs that are manipulated via intracellular 
glutathione levels. Ligands bound on the surface of the AuNPs are 
exchanged with the cellular glutathione (GSH), which will result in 
altering the AuNPs surface charge and loosening the nucleic acids 
bound to the nanoparticles [150]. Moreover, different GSH levels 
provide a mechanism for transfection regulation increasing efficiency 
in a concentration dependent fashion. Conversely, suppression of 
glutathione by L-buthionine-[S,R]-sulfoximine (BSO) treatment over 
24 h caused lower transfection efficiency [154-157]. Furthermore, 
AuNPs may also be used in combination with other nano particles in 
order to improve and enhance efficiency. A more recent experiment 
combined both dendrimers and AuNPs, the unique morphology has 
maintained the three dimensional spherical form of dendrimers while 

increasing the number of binding sites [34,69]. These unique Au 
DENPs have a generation 5 PAMAM dendrimers with amine groups 
on their periphery, significantly augmented pDNA compaction and 
eventually improved nucleic acid delivery with a 100 times enhanced 
gene transfection efficiency than the conventional DENPs . Recently, 
a study using ethylenimine-conjugated AuNPs (PEI2-AuNPs) as a 
vector for corneal gene therapy demonstrated efficient delivery of 
BMP7 gene that significantly attenuated corneal fibrosis in an in vivo 
model. Furthermore, PEI2-GNPs exhibited minimal cytotoxicity and 
did not trigger an immune response [158] . More recently, a 2015 study 
have discussed the co delivery of and DNA and siRNA using hybrid 
coated gold nanoparticles [156,157].

Quantum dots for labeling genetic material: Quantum dots (QDs) 
are crystalline nanoparticles with electrical and mechanical properties. 
QDs are highly luminescent, colloidal semiconductor Nano crystals. 
QDs have unique size-dependant properties, which make them highly 
attractive for applications in catalysis, phosphors, photovoltaic, light 
emitting diodes (LEDs) and biological labeling. The main appealing 
feature of semiconductor NCs, are their mesoscopic properties that 
differentiates them from bulk crystals. Besides, it is possible to bind 
quantum dots to proteins and receptors to check with which molecules 
they interact and to explore their location in the cell. Hence, QDs 
are used in biomedical applications because of their unique tunable 
optical properties [12,16,155]. Made of semiconductor, quantum dots 
can be excited which makes them suitable not only in monitoring the 
genes; they are capable of overcoming the challenge of gene silencing. 
During excitation, the quantum dots attain a higher energy state. This 
usually occurs during preparation; before being used for gene delivery. 
However, upon entering the cell the differential pH causes the QDs 
return to a lower energy state. The photons lost during such process 
leads to fluorescence. The produced light bands are visible to the naked 
eye. They can be viewed eve within organic matter; that is, quantum dots 
have bioluminescence qualities. Therefore, their optical and electrical 
properties allow for bioluminescence. Their small sizes make them 
suitable for delivering genes; they can regain their sizes while in the 
cell. Semiconductor quantum dots (QDs) can be used to deliver genes 
such as RNA interference (RNAi) which is capable of silencing genes in 
the cell which either cause a disease or interfere with the activation of 
the delivered genes and synthesis of the therapeutic proteins [157-159]. 
The ability of the quantum dots to emit light in the visible spectrum 
of various wavelengths even within biological organisms make the 
nanoparticles important for tracking and monitoring the genes 
during the transfection. Such tracking and monitoring have provided 
important clues on how and when activation and silencing of the genes 
occur [160,161]. Moreover, they significantly reduce the degradation 
of the genes by the DNA nucleases. Additionally, QDs have been used 
as siRNA delivery vehicles to silence a target gene, and as fluorescent 
probes to analyze intracellular imaging in vivo. QDs-SiRNA complex 
has targeted HPV18 E6 oncogene which has eventually inhibited the 
growth of HeLa cells. QD-siRNA complexes serve as dual-modality; 
providing an optical and tool for live cell imaging and localization of 
QDs throughout the SiRNA delivery and transfection (Figure 9) [161].

Conclusion 
In summary, gene therapy is one of the most exciting and 

revolutionary new approaches to therapies. The application of gene 
therapy has been hindered due to many reasons. It has been shown 
that therapeutic Nanomaterials could be utilized as promising tools 
to specifically deliver siRNA and mRNA to the target cells. Polymeric 
nanoparticles are the most commonly used type of nanoparticles used 
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in gene therapy due to their biocompatibility and their ability to deliver 
the genetic material to its target with loss of its function. Nonetheless, 
the realization of such therapies is still debatable. Moving from the lab 
to the clinic has not yet been achieved. Hence, research in this area 
still requires in depth studies that involve functional assays. First, the 
nanomaterial should be designed and characterized; secondly, verify 
routes of administration of the therapies and finally, simplifying the 
synthesis methods making it trouble-free to expand at an industrial level.
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