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Introduction
Titanium dioxide nanoparticles (TiO2 NPs) have been used 

in various areas, including pigment [1], paints [2], medicine [3], 
sunscreens [4], cosmetics[5], food additives and food packaging 
[6,7], and in environmental decontamination systems [8,9]. However, 
numerous studies demonstrated that TiO2 NP exposure can conduct 
the damages of central nervous system (CNS) [10-17]. For instance, 
Wang et al. [12] indicated that TiO2 NPs damaged CA1 region of the 
hippocampus and caused high inflammatory responses by elevating 
TNF-α and IL-1β levels, oxidative stress in the exposed mice [13]. 
Shin et al. [18] demonstrated that TiO2 NPs induced TNF-α and IL-
1β expression and enhanced nuclear factor-κB (NF-κB) binding 
activity by increasing microglial activation in the pre-inflamed brain 
of mice, and led to an exaggerated neuroinflammatory response. Our 
numerous studies suggested that exposure to TiO2 NPs resulted in 
excessive species reactive oxygen (ROS) production and decreased 
antioxidant capacity[15], calcium overload, proliferation of glial cells, 
and altered contents trace elements neurotransmitters[19], led to 
hippocampal apoptosis via mitochondrial or the intrinsic pathway 
[16] and a reduction in spatial recognition memory in mice [16,19]. 
Furthermore, TiO2 NP-induced oxidative damage in the mouse brain 
was demonstrated to be via the p38-Nrf-2 signaling pathway [20], and 
TiO2 NP-induced neuroinflammation was associated with activation of 
the TLRs/TNF-α/NF-κB pathway [21]. However, the mechanisms of 
how this neurotoxicity are not understood.

 N-methyl-D-aspartate receptors (NMDARs), which are glutamate-
gated ion channel receptors, are widely expressed in the CNS and play 
pivotal roles in excitatory synaptic transmission, synaptic plasticity, 
learning and memory of mammalian brain [22]. NMDARs include 
different subunits within a repertoire of three subtypes: NR1, NR2 
(NR2A-D) and NR3 (NR3A and NR3B) [23]; and NR1 and either NR2B 
or NR2A are most widely expressed [22]. Exposure to TiO2 NPs was 
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Abstract
The central nervous system (CNS) toxicity induced by exposure to nano-sized particles is of great concern, but the 

mechanism of how this toxicity may be incurred has yet to be elucidated. Here, we examined how N-methyl-D-aspartate 
(NMDA) receptor-mediated postsynaptic signalling cascade may be affected by titanium dioxide particles (TiO2 NPs) 
exposure for six consecutive months to contribute to the observed neurotoxicity. The results suggest that long-term 
exposure to TiO2 NPs led to titanium accumulation and iron reduction in the blood and hippocampus tissues, and 
significant hippocampal injury as well as reduction of learning and memory in mice. The CNS injuries following long-
term TiO2 NP exposure were closely associated with significant reductions in NR1, NR2A, NR2B, calcium/calmodulin-
dependent protein kinase II, postsynaptic density protein 95, nuclear activated extracellular-signal regulated kinase 
(ERK1/2), Dexras1, CAPON, peripheral benzodiazepine receptor-associated protein, and divalent metal transporter 
as well as elevation of synaptic Ras GTPase- activating protein and neural nitric oxide synthase in the hippocampus. 
It implies that long-term exposure to TiO2 NPs may induce neurotoxic effects via impairing NMDA receptor-mediated 
postsynaptic signalling cascade in animals. 

demonstrated to increase glutamate release [19], and to inhibit NR2A 
and NR2B expression as well as to impair long-term potentiation (LTP) 
in rat or mouse hippocampus [24,25]. Therefore, we hypothesize that 
these changes mentioned above may further lead to the impairment of 
postsynaptic signalling cascade in the brain. 

In excitatory synapses of the brain, specific receptors in the 
postsynaptic membrane can rapidly respond to the release of glutamate 
from the presynaptic terminal. Upon stimulation, these glutamate 
receptors activate postsynaptic signaling pathways that transduce 
signals into the postsynaptic neuron [26]. NMDAR activation can 
result in either LTP or long-term depression (LTD) of synaptic 
strength. NMDARs are embedded in the postsynaptic density (PSD), 
which involved in the postsynaptic membrane that contains a variety 
of scaffolding and signaling proteins. Many of the prominent proteins 
in the PSD fraction bind directly or indirectly to the NMDA receptor. 
Thus, the PSD fraction contains a core NMDA receptor-signaling 
complex, and serves as the signaling scaffold to bridge NMDARs to 
the intracellular signaling complexes [27-29] and is required to sustain 
the molecular organization of the postsynaptic density [30]. PSD-
95 can also interact with a host of cytoplasmic signaling molecules, 
such as neuronal nitric oxide synthase (nNOS) and SynGAP, thereby 
connecting NMDARs to divergent signal transduction pathways 
[26]. Its overexpression can inhibit LTP and decrease LTD induction 
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[28,31,32]. Synaptic GTPase-activating protein (SynGAP) is a synaptic 
Ras GTPase-activating protein (RasGAP) that interacts with PSD-95 in 
vitro and in vivo. It stimulates GTPase activity of Ras, which shows that 
it negatively regulates Ras activity at excitatory synapses [33]. SynGAP 
was demonstrated to play a critical role in the regulation of neuronal 
mitogen-activated protein kinase (MAPK) signaling, α-amino-
3-hydroxyl-5-methyl-4-isoxazole-proprionte glutamate receptor 
(AMPAR) membrane trafficking and excitatory synaptic transmission, 
and its overexpression led to a marked decrease of extracellular signal-
regulated kinase (ERK) 1/2 activation [34]. While MAPK/ERK pathway 
plays a pivotal role in learning and memory [28,35,36]. In addition, 
NMDA receptor stimulation of nNOS activates Dexras1. Glutamate via 
NMDA receptors triggers cellular Ca2+ entry with calcium-calmodulin 
activating nNOS [37], whose binding to CAPON provides a mechanism 
for nitric oxide (NO) delivery to Dexras1, leading to S-nitrosylation of 
Dexras1 on cysteine-11 [38,39]. Therefore, the NMDA-NO-Dexras1-
peripheral benzodiazepine receptor-associated protein (PAP7)-
divalent metal transporter (DMT1)-iron uptake signaling cascade 
was suggested to mediate NMDA neurotoxicity [40]. Our previous 
study showed that TiO2 NPs not only decreased expression of NR2A, 
NR2B, calcium/calmodulin-dependent protein kinase IV (CaMKIV), 
cyclic-AMP responsive element binding protein (CREB)-1, and CREB-
2, and inhibited LTP [25], but also activated NOS and increased NO 
overproduction [15,19], and reduced iron content in mouse brain 
[19], these may interfere with the expression of NMDA receptor and 
postsynaptic signaling proteins mentioned above. However, the NMDA 
receptor-mediated postsynaptic signaling cascade caused by TiO2 NPs 
in the hippocampus remains unclear.

In view of the above, the aim of the present study was to evaluate 
brain injury, and alterations in the expression of NR2A, NR2B, PSD-95, 
ERK1/2, SynGAP, Dexras1, CAPON, PAP7, nNOS, and DMT1 in mouse 
hippocampus, and to determine whether TiO2 NP-induced neurotoxic 
effects via impairing NMDA receptor-mediated postsynaptic signaling 
cascade in the hippocampus caused by TiO2 NP exposure. 

Materials and Methods
Chemicals

Hydroxypropyl methylcellulose (HPMC) K4M was purchased 
from Sigma-Aldrich Company. Cell Lysis Kits were purchased from 
GENMED SCIENTIFICS INC (USA). Enzyme linked immunosorbent 
assay (ELISA) commercial kits were purchased from R&D Systems 
(USA). Other chemicals were purchased from Shanghai Chemical Co. 
(China).

The preparation, characteristics of TiO2 NPs including the anatase 
structure, size, surface area, mean hydrodynamic diameter and ζ 
potential, have been described in our previous work [16,41]. X-ray-
diffraction (XRD) were used to detect the anatase structure and size 
with a charge-coupled device (CCD) diffractometer (Mercury 3 
Versatile CCD Detector; Rigaku Corporation, Tokyo, Japan) using 
Ni-filtered Cu Kα radiation. The NP size was determined using a 
TecnaiG220 transmission electron microscope (TEM) (FEI Co., USA). 
The surface area of NPs was determined by Brunauer–Emmett–Teller 
(BET) adsorption measurements on a Micromeritics ASCORBIC 
ACIDP 2020M+C instrument (Micromeritics Co., USA). The average 
aggregate or agglomerate size and ζ potential of NPs was measured 
by dynamic light scattering (DLS) using a Zeta PALS+BI-90 Plus 
(Brookhaven Instruments Corp., USA). XRD measurements suggested 
that TiO2 NPs showed the anatase structure. The average particle size of 
powdered TiO2 NPs suspended in 0.5% w/v HPMC solvent after 24 h 

(5 mg/mL) incubation ranged from 5 to 6 nm, and the surface area was 
174.8 m2/g. The mean hydrodynamic diameter of TiO2 NPs in HPMC 
solvent (5 mg/mL) ranged from 208 to 330 nm (mainly 294 nm), and 
the ζ potential after 24 h incubation was 9.28 mV [16]. 

Animals and treatment 

One hundred and sixty CD-1 (ICR) female mice (24 ± 2 g) were 
purchased from the Animal Center of Soochow University (China). 
The mice were housed in stainless steel cages in a ventilated animal 
room. The room temperature in the housing facility was maintained 
at 24 ± 2°C, with a relative humidity of 60 ± 10% and a 12 h light/
dark cycle. Distilled water and sterilized food were available ad libitum. 
Before treatment, the mice were acclimated to this environment for five 
days. All the animals were handled in accordance with the guidelines 
and protocols approved by the Care and Use of Animals Committee of 
Soochow University (China).

For the experiment, the mice were randomly divided into four 
groups (N=40 in each group), including a control group (treated 
with 0.5% w/v HPMC) and three experimental groups (1.25, 2.5, or 
5 mg/kg BW TiO2 NPs). The mice were weighed, volume of TiO2 NP 
suspensions was calculated for each mouse, and the fresh TiO2 NP 
suspensions were administered to the mice by nasal administration 
every day for 6 months. Any symptom or mortality was observed and 
recorded carefully everyday during the 6 months. In addition, the mice 
were regularly handled and weighed before the behavioral experiments.

Behavioral experiment

Following the 6 months of TiO2 NP administration, the acquisition 
of spatial recognition memory was determined using the Y-maze 
in mice (N=10 in each group). In order to avoid any stress-related 
interference with the learning procedure, mice were not handled by the 
experimenter but were allowed to voluntarily enter the maze. To assess 
spatial recognition memory, the Y-maze test consisted of two trials 
separated by an intertrial interval (ITI). The Y-maze was consisted of 
three arms and was randomly designated: Start arm, in which the mouse 
started to explore (always open), Novel arm, which was blocked during 
the 1st trial, but open during the 2nd trial, and other arm (always open). 
The maze was placed in a sound attenuated room with dim illumination. 
The floor of the maze was covered with sawdust, which was mixed after 
each individual trial in order to eliminate olfactory stimuli. Visual cues 
were placed on the walls of the maze, and the observer was always in the 
same position at least 3 m from the maze. Assay of acquisition of spatial 
recognition memory in mice was described in previous reports [42,43]. 

To measure spatial recognition memory, the number of entries and 
time spent in each arm of the maze by each mouse was recorded and 
novelty versus familiarity was analyzed by comparing behavior in all 
three arms. The number of arms visited was taken as an indicator of 
locomotor and exploratory activity.

Preparation of hippocampus

 After behavioral detection, mice were weighed. Blood samples 
were collected from the eye vein by rapidly removing the eyeball. The 
hippocampi from all animals were quickly dissected from brains and 
placed in ice-cold dish.

Analysis of titanium and iron content
 The hippocampi were thawed and approximately 0.1 g samples 

were weighed, then these tissues and 5 ml blood were digested, and 
analyzed for titanium, and iron content (N=5 in each group). Briefly, 
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prior to elemental analysis, the blood and hippocampal tissues were 
digested overnight with nitric acid (ultrapure grade). After adding 
0.5 mL of H2O2, the mixed solutions were incubated at 160°C in 
high pressure reaction containers in an oven until the samples were 
completely digested. Then, the solutions were incubated at 120°C to 
remove any remaining nitric acid until the solutions were colorless and 
clear. Finally, the remaining solutions were diluted to 3 mL with 2% 
nitric acid. Inductively coupled plasma-mass spectrometry (Thermo 
Elemental X7; Thermo Electron Co., Waltham, MA, USA) was used 
to determine the titanium, and iron concentration in the samples. 
Indium of 20 ng/mL was chosen as an internal standard element. The 
detection limit of titanium, and iron was 0.089 ng/mL, and 0.062 ng/
mL, respectively.

Histopathological examination
 For pathologic studies, all histopathologic examinations were 

performed using standard laboratory procedures. Briefly, hippocampi 
(N=5 in each group) were embedded in paraffin blocks, then sliced (5 
µm thickness) and placed onto glass slides. After hematoxylin–eosin 
staining, the stained sections were evaluated by a histopathologist 
unaware of the treatments, using an optical microscope (Nikon U-III 
Multi-point Sensor System, Japan).

Assay of gene and protein expression
 The levels of mRNA expression of NR1, NR2A, NR2B, CaMKII, 

PSD-95, SynGAP, ERK1/2, Dexras1, CAPON, PAP7, DMT1, and nNOS 
in the hippocampi were determined using real-time quantitative RT 
polymerase chain reaction (RT-PCR) (N=5 in each group) [44-46]. 

Synthesized cDNA was used for the real-time PCR. Primers were 
designed using Primer Express Software according to the software 
guidelines (Table 1). Total RNA was extracted from individual 
hippocampi using from the homogenates was isolated using Tripure 

Isolation Reagent (Roche, USA) according to the manufacturer’s 
instructions. The RT reagent (Shinegene Co., China) of 30 µl was 
prepared by mixing 15 µl of 2×RT buffer, 1 l random primer in a 
concentration of 100 pmol.µl-1, 1µl of RTase, 5 µl RNA, and 8 µl DEPC 
water together. The reaction condition was 25°C for 10 min, 40°C for 
60 min, and 70°C for 10 min. The internal reference gene was actin3. 
qRT-PCR was performed using the 7500 Real-time PCR System (ABI) 
with SYBR Premix Ex Taq™ (Takara) according to the manufacturer’s 
instructions. The RT-qPCR data were processed with the sequence 
detection software version 1.3.1 following the method of Schefe et al. 
[47], analyzed based on the standard curve using the threshold cycle 
(Ct) model for relative quantification [45] and the expression levels of 
mRNA of all genes were normalized by the contents of actins mRNAs. 

To determine protein levels of NR1, NR2A, NR2B, CaMKII, 
PSD-95, SynGAP, ERK1/2, Dexras1, CAPON, PAP7, DMT1, and 
nNOS in the hippocampi, total protein from the frozen hippocampal 
tissues (N=5 in each group) from experimental and control mice was 
extracted using Cell Lysis Kits (GENMED SCIENTIFICS INC.USA) 
and quantified using BCA protein assay kits (GENMED SCIENTIFICS 
INC.USA). ELISA was performed using commercial kits that were 
selective for each respective protein (R&D Systems, USA), following 
the manufacturer’s instructions. The absorbance was measured on 
a microplate reader at 450 nm (Varioskan Flash, Thermo Electron, 
Finland), and the concentrations of NR1, NR2A, NR2B, CaMKII, PSD-
95, SynGAP, ERK1/2, Dexras1, CAPON, PAP7, DMT1, and nNOS were 
calculated from a standard curve for each sample.

Statistical analysis
 All results are expressed as means ± SD. The Kolmogorov-Smirnov 

test with Dunn’s post test was used to compare control and treated 
groups using SPSS 19 software (SPSS, Inc., Chicago, IL, USA). A 
P-value<0.05 was considered statistically significant.

Gene name Description Primer sequence Primer size (bp)

Refer-actin
mactin-F 5′-GAGACCTTCAACACCCCAGC-3′
mactin-R 5′-ATGTCACGCACGATTTCCC-3′ 263

NR1
mNR1-F 5′-CAGTGCCCCAGTGCTGTTAT-3′
mNR1- R 5′-CTCTCCCATCATTCCGTTCC-3′ 164 

NR2A
mNR2A F ATGAACCGCACTGACCCTAAG
mNR2A R GGCTTGCTGCTGGATGGA 246

NR2B
mNR2B F AATGTGGATTGGGAGGATAGG
mNR2B R ATTAGTCGGGCTTTGAGGATACT 255

CaMKII
mCaMKII -F 5′- AGTCCAGTTCCAGCGTTCAGT -3′
mCaMKII -R 5′- GGGTCGCACATCTTCGTGTA -3′ 166

PSD-95
mPSD-95-F 5′-GTTCCCCGACAAGTTTGGAT-3′
mPSD-95-R 5′-CTCGCACAGACTGGACGCT-3′ 191

SynGAP
mSynGAP-F 5′-ATCCACGCTTAACCCCACA-3′
mSynGAP-R 5′-CTCATACTCCTTCACCCTGTCC-3′ 175

ERK1/2
(Mapk1)

mERK1/2-F 5′-GCACCGTGACCTCAAGCC-3′
mERK1/2-R 5′-TGCAGCCCACAGACCAAA-3′ 212

Dexras1
mDexras1-F 5′-CCATCGAGGACTTCCACCG-3′
mDexras1-R 5′-GCTGAACACCAGAATGAAAACG-3′ 146

CAPON
mCAPON-F 5′-ACAGACATTGACGCCGTGG-3′
mCAPON-R 5′-TCCTGAGGGTGGGGTGAGA-3′ 137

PAP7
mPAP7-F 5′-GAGAAGTCGTCACCGTCCG-3′
mPAP7-R 5′-AAATAAACCCCAAACCCAATG-3′ 100

nNOS
mnNOS-F 5′-CGCTGCTACAACCTCGCTAC-3′
mnNOS-R 5′-TGAGCCAGGAGGAGCACAC-3′ 144

DMT1
mDMT1-F 5′-TCACCATCGCAGACACTTTTG-3′
mDMT1-R 5′-GACAGGACGGCACGAACAT-3′ 174

Table 1: Real time PCR primer pairs. PCR primers used in the gene expression analysis. 
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Results
Spatial recognition memory and locomotor activity

Table 2 exhibits effects of TiO2 NPs on the spatial recognition 
memory of mice. It can be observed that the percentage duration in 
the novel arm in control mice was significantly higher than that in the 

start and other arms, whereas the percentage duration in the novel arm 
in 1.25, 2.5, or 5 mg/kg BW TiO2 NP-exposed mice was significantly 
decreased as compared to the control mice throughout the experiment 
(P<0.05), respectively, suggesting that long-term exposure to TiO2 NPs 
reduced leaning and memory of mice. To confirm effects of TiO2 NPs on 
locomotor activity of mice, number of arm visits was also examined and 
are presented in Figure 1. With increased TiO2 NP dose, the number of 
arm entries markedly decreased (P<0.05). 

Titanium and iron contents 
Figure 2 presents titanium and iron contents in the blood and 

hipocampus caused by TiO2 NP exposure. With increased TiO2 NP 
dose, there were significant increases of titanium levels, whereas iron 
levels were markedly reduced in the blood and hipocampus (Figure 2, 
P<0.01). Titanium content in the control mice was negligent (Figure 2). 
The increased titanium and decreased iron may lead to hippocampal 
injury and impairment of hippocampal function, which were confirmed 
by the assays of NMDA receptor and postsynaptic signalling factors as 
well as histopathological observations of mouse hippocampus.

Hippocampal histopathological observations
Following long-term exposure to 1.25, 2.5, or 5 mg/kg BW TiO2 

NPs, histopathological changes from hippocampal CA region were 
observed (Figure 3B-3D), which suggested significant edema of glial 
cells, disperative replication of neuron cells, decreased size of cell 
volume, nuclear irregularity, and necrosis or abscission of neuron cells. 

Expression of NMDA receptor subunit and postsynaptic 
signaling factor

In the present study, actin3 was chosen as the endogenous control 
gene. The expression level of the actin3 gene was constant, with an 

Percentage of 
duration of visits(%) Control 1.25 mg/kg 2.5 mg/kg 5 mg/kg

Novel arm 44 ± 5.5 30 ± 4.2* 16 ± 2.8** 6 ± 1.7***
Start arm 26.5 ± 2.9 32 ± 4.1* 38 ± 5.7* 42 ± 5.9**
Other arm 29.5 ± 3.3 38 ± 5.1* 46 ± 6.6** 52 ± 7.8**

*p < 0.05, and **p<0.01. Values represent means  ±  SD (N=10).
Table 2: Effect of TiO2 NPs on the spatial recognition memory of mice in Y-maze 
after nasal administration of TiO2 NPs for six consecutive months.
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Figure 1: Effects of TiO2 NPs on locomotor activity of mice in Y-maze after 
nasal administration of TiO2 NPs for six consecutive months. **p<0.01, and 
***p<0.01. Values represent means ± D (N=10).
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Figure 2: Titanium and iron contents in the blood and hippocampus of mice 
after nasal administration of TiO2 NPs for six consecutive months. *p<0.05, 
**p<0.01, and ***p<0.01. Values represent means ± SD (N=5).
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Figure 3: Histopathology of CA region of hippocampus in mice after nasal 
administration of TiO2 NPs for six consecutive months. (a) Control group 
indicates great nucleus and limpid nucleolus of glial cells and pyramidal 
cells; (b) 1.25 mg/kg BW TiO2 NP group indicates disperative replication 
of pyramidal cells, edema of glial cells; (c) 2.5 mg/kg BW TiO2 NP group 
indicates disperative replication of pyramidal cells, decreased size of cell 
volume, nuclear irregularity; (d) 5 mg/kg BW TiO2 NP group indicates 
degeneration, necrosis or abscission of neuron cells.
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expression ratio of almost one in all the samples (data not listed). 
Therefore, using this gene as a reference, changes in the expression 
levels of the 12 NMDA receptor subunit and/or postsynaptic signaling 
factor genes were evaluated and compared following exposure to TiO2 
NPs for six consecutive months (Table 3).

Long-term exposure to TiO2 NPs resulted in a dose-dependent 
marked decrease in the mRNA and protein expression of NMDA 
receptor subunits, including NR1, NR2A and NR2B in the hippocampus 
(Tables 3 and 4), suggesting reductions of 16.67%, 64.71% and 75.49%; 
15.63%, 67.8% and 78.07% for NR1; reductions of 34.52%, 67.85% and 
75%; 41.18%, 71.67% and 78.39% for NR2A, reductions of 33.82%, 
57.35% and 73.53%; 15.63%, 62.41% and 77.11% for NR2B, respectively. 

To confirm NMDA receptor-mediated postsynaptic signaling 
cascade, the levels of several postsynaptic signaling factors, including 
CaMKII, PSD-95, SynGAP, ERK1/2, Dexras1, CAPON, PAP7, DMT1, 
and nNOS in mouse hippocampus, were analyzed by RT-PCR and 
ELISA. As the dose of TiO2 NPs increased, there were significant 
reductions in CaMKII, PSD-95, ERK1/2, Dexras1, CAPON, PAP7, and 
DMT1 expression; whereas there were marked increases of SynGAP 
and nNOS expression in the hippocampi (Tables 3 and 4, P<0.05).

Discussion
In the current study, the effects of long-term exposure to TiO2 NPs 

on the expression of NMDA receptor and postsynaptic signalling factors 
in mouse hippocampus were evaluated. The TiO2 NP accumulation 
was confirmed by the markedly increased titanium levels in the blood 
and hippocampus (Figure 2), suggesting that TiO2 NPs can easily cross 

blood-brain barrier into the hippocampus, depositing TiO2 NPs in the 
hippocampus (Figure 2) and damaging hippocampus (Figure 3). In 
addition, TiO2 NP exposure resulted in reductions of iron contents in 
the blood and hippocampus (Figure 2). Our previous study has been 
demonstrated that exposed mice to TiO2 NPs presented low iron content 
[20]. Numerous studies demonstrated that TiO2 NP accumulation and 
iron deficiency in mouse brain resulted in excessive production of 
species reactive oxygen (ROS), and increased peroxidation levels [15-
17,19,48-50], which may damage hippocampus. The Y maze is regarded 
as one of common behavioral tasks to evaluate cognitive abilities of 
rodents. Hippocampus-dependent spatial learning and memory are 
frequently investigated by observing the behavioral performance of 
animals in the Y maze. The results of this study indicated that long-
term exposure to TiO2 NPs resulted in decreases in spatial recognition 
memory (Table 2), for example, the time spent in the unfamiliar novel 
arm in the TiO2 NP-exposed mice was lower than unexposed mice 
(Table 2). Locomotor activity acts as a function of the excitability level 
of the CNS [51]. The present study shows that TiO2 NP exposure for 
six consecutive months decreased locomotor activity in mice (Figure 
1), which is consistent with our previous reports [15-17,19-21,25]. 
Decreased spatial cognition of mice caused by TiO2 NP exposure may 
be closely associated with the accumulation of TiO2 NPs, reduction of 
iron uptake and the damaged hippocampus. Furthermore, decreased 
spatial cognition of mice may be triggered through NMDA receptor-
mediated postsynaptic signaling cascade in the hippocampus.

The present study shows that long-term exposure to TiO2 NPs 
significantly decreased NR1, NR2A and NR2B in the hippocampus 

Ratio of gene/actin (Fold) Control 1.25 mg/kg 2.5 mg/kg 5 mg/kg
NR1 1.02 ± 0.15 0.85 ± 0.11 0.36 ± 0.06** 0.25 ± 0.04**

NR2A 0.84 ± 0.09 0.55 ± 0.06* 0.27 ± 0.03** 0.21 ± 0.02**
NR2B 0.68 ± 0.07 0.45 ± 0.04* 0.29 ± 0.04** 0.18 ± 0.02***

CaMKII 1.13 ± 0.15 0.88 ± 0.12 0.49 ± 0.05** 0.31 ± 0.03***
PSD-95 0.72 ± 0.08 0.47 ± 0.05* 0.32 ± 0.03** 0.21 ± 0.01***
SynGAP 0.37 ± 0.02 0.62 ± 0.04* 0.81 ± 0.06* 0.98 ± 0.09**

ERK1/2(Mapk1) 4.57 ± 0.35 2.96 ± 0.24* 2.44 ± 0.22* 1.84 ± 0.19**
Dexras1 3.94 ± 0.29 2.46 ± 0.21* 1.56 ± 0.18** 1.01 ± 0.12***
CAPON 0.67 ± 0.08 0.42 ± 0.05* 0.34 ± 0.03** 0.25 ± 0.02**
PAP7 1.27 ± 0.13 0.75 ± 0.08* 0.42 ± 0.04** 0.21 ± 0.02***
nNOS 3.72 ± 0.31 5.05 ± 0.46* 6.39 ± 0.57* 10.56 ± 1.08***
DMT1 0.85 ± 0.07 0.54 ± 0.05* 0.36 ± 0.04** 0.22 ± 0.02***

*p<0.05, **p<0.01, and ***p<0.01. Values represent means ± SD (N=5).
Table 3: Effect of TiO2 NPs on mRNA expression of gene in mouse hippocampus after nasal administration of TiO2 NPs for six consecutive months.

Protein expression (ng/g 
tissue) Control 1.25 mg/kg 2.5 mg/kg 5 mg/kg

NR1 58.14 ± 3.91 49.05 ± 3.55 18.72 ± 1.93** 12.75 ± 1.52***
NR2A 49.56 ± 3.55 29.15 ± 2.46* 14.04 ± 1.52** 10.71 ± 1.25***
NR2B 40.12 ± 3.62 33.85 ± 2. 5 15.08 ± 1.85** 9.18 ± 1.21***

CaMKII 67.88 ± 5.12 56.64 ± 5.05 25.48 ± 2.27** 15.81 ± 1.32***
PSD-95 43.25 ± 3.61 24.91 ± 2.26* 16.64 ± 1.42** 10.71 ± 1.05***
SynGAP 18.53 ± 1.62 32.24 ± 2.83* 43.74 ± 3.58* 54.88 ± 4.89***
ERK1/2 182.86 ± 12.31 115.44 ± 8.51* 92.72 ± 6.36* 64.69 ± 5.33**
Dexras1 236.48 ± 16.58 159.96 ± 11.26* 96.72 ± 8.85** 58.58 ± 6.39***
CAPON 40.22 ± 3.21 27.31 ± 2.36* 21.08 ± 2.23* 14.56 ± 1.38**
PAP7 76.28 ± 5.85 48.75 ± 3.27* 26.04 ± 2.31** 12.18 ± 1.18***
nNOS 212.04 ± 13.62 257.95 ± 15.89 389.79 ± 25.68** 654.72 ± 45.71***
DMT1 51.55 ± 4.71 43.78 ± 3.59 19.88 ± 2.09** 12.98 ± 1.04***

*p<0.05, **p<0.01, and ***p<0.01. Values represent means ± SD (N=5).
Table 4: Effect of TiO2 NPs on levels of protein expression of gene in mouse hippocampus after nasal administration of TiO2 NPs for six consecutive months.
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(Tables 3 and 4), which is consistent with our previously reported 
results [25]. This finding supports our assumed alteration of NMDA 
receptor in the TiO2 NP-exposed mice. Numerous important NMDA 
receptor properties are influenced by the subunits composing the 
receptor assembly [52]. It was reported that LTP in the hippocampus 
is specifically related to NR2A-containing NMDARs [53]. TiO2 
NP exposure was suggested to markedly inhibit the induction and 
establishment of LTP in rats and mice [24,25]. Alteration of NMDA 
receptor expression may affect expression of postsynaptic signaling 
factors. Upon NMDA receptor stimulation, CaMKII is endlessly induced 
and is essential for NMDAR-dependent LTP [54]. CaMKII expression 
has been demonstrated to play an important role in learning, memory, 
and synaptic plasticity [55]. Toscano et al. [56] demonstrated that Pb2+ 
exposure could decrease CaMKII activity and expression in rats. In 
current study, reduced NR1, NR2A and NR2B and CaMKII expression 
were found in the TiO2 NP-exposed mice, suggesting that TiO2 NPs 
may disrupt the normal NMDA receptor assembly and the function of 
CaMKII. Our previous finding also indicated that TiO2 NP exposure led 
to reductions of CaMKIV activity and expression, spatial cognition, and 
synaptic plasticity in mice [25]. As a signaling scaffold, PSD-95 brings 
intracellular signaling complexes close to NMDAR channels. PSD-95 
bridges the Ca2+ influx to the specific downstream signaling events 
[29]. Our data suggest that with increased TiO2 NP dose, decreased 
PSD-95 expression in the hippocampus was significantly observed 
(Tables 3 and 4), which would impair the molecular organization of 
the postsynaptic density, synaptic strength and plasticity [30]. SynGAP 
had been demonstrated to be a negative regulator of Ras at excitatory 
synapses [33], and to be inhibited by CaMKII phosphorylation [57]. 
Furthermore, ERK activation had been suggested to play an important 
role in the consolidation and reconsolidation of recognition memory 
[58]. In the present study, our data show that TiO2 NP exposure 
significantly reduced CaMKII expression and increased SynGAP 
expression, leading the inhibition of ERK1/2 expression in mouse 
hippocampus (Tables 3 and 4). 

Nitric oxide (NO) may not freely diffuse to reach its physiological 
targets but may be conveyed to these sites by interactions of NOS with 
other proteins [40]. As shown by reports, nNOS can bind to the PSD-
95/93, which in turn binds to NMDA receptors [59,60]. This ternary 
complex enables NO to S-nitrosylate NMDA receptors and alters their 
signaling [61]. Therefore, we presume that increased nNOS expression 
and decreased PSD-95 expression caused by TiO2 NPs may influence 
NO to S-nitrosylate NMDA receptors and interfere their signaling in 
the hippocampus. 

CAPON was identified to be a 55 kDa protein that contains a 
C-terminal domain that binds to the PDZ domain of nNOS and 
an N-terminal phosphotyrosine binding (PTB) domain [38], and 
interacts with Dexras1 [40,62,63]. While Dexras1 shares about 35% 
homology with the Ras subfamily of proteins and contains all of the 
conserved domains of typical GTPases, and has also been designated 
activator of G protein signaling 1 (AGS1) or RASD1 [40,64], activating 
extracellular signal-regulated kinases 1, 2 (ERK1, 2) [65-67]. PAP7 is 
proved to bind to DMT1, the only known physiological import channel 
for iron, activation of NMDA receptor stimulates nNOS, resulting in 
S-nitrosylation and activation of Dexras1, which induces iron uptake 
via interactions with PAP7 and DMT1. Glutamate, acting via NMDA 
receptors, activates nNOS to form NO [37], which leads to protein 
S-nitrosylation [68]. This modification activates Dexras1, which, by 
its link to PAP7, augments both Tf-mediated and NTBI uptake. From 
Figure 3, we observed a marked reduction of the Fe content in the 
TiO2 NP-exposed hippocampus. The roles of intraneuronal iron are 

involved in synthesis, packaging of neurotransmitters, uptake as well 
as degradation of the neurotransmitters into other iron-containing 
proteins that may directly or indirectly alter brain function through 
peroxide reduction, amino acid metabolism and fat desaturation, thus 
changing postsynaptic membrane functioning [69]. In the present 
study, long-term exposure to TiO2 NPs significantly decreased levels of 
ERK1/2, Dexras1, CAPON, PAP7, and DMT1 expressions and elevated 
nNOS level (Tables 3 and 4), which may be associated with reduction 
of iron uptake (Figure 2), thus impairing NMDA-NO-Dexras1-PAP7-
DMT1-iron uptake postsynaptic signaling cascade in the hippocampus 
[70].

Conclusion
Mice were exposed to TiO2 NPs for six consecutive months, titanium 

accumulation and iron reduction in the blood and hippocampus tissues 
were observed, which in turn resulted in significant hippocampal 
injury and reduction of spatial cognition in mice. The CNS injuries 
following long-term TiO2 NP exposure may be closely associated with 
NMDA receptor-mediated postsynaptic signaling cascade, marked 
by significant reductions in NR1, NR2A, NR2B, CaMKII, PSD-95, 
ERK1/2, Dexras1, CAPON, PAP7, and DMT1 expressions as well as 
elevations of SynGAP and nNOS expressions in the hippocampus. 
Therefore, the application of TiO2 NPs should be carried out cautiously, 
especially in humans.
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