
Volume 6(6): 052-056 (2014) - 052 
J Bioanal Biomed    
ISSN: 1948-593X JBABM, an open access journal

Open Access

Li and Qiu, J Bioanal Biomed 2014, 6:6 
DOI: 10.4172/1948-593X.1000111

Review Article Open Access

Introduction
This review briefly discusses key recent research literature 

on Angelman Syndrome (AS), a rare genetic disorder of 
neurodevelopmental origin. Dysfunction/inactivation of the maternal 
UBE3A gene and its surrounding chromosome regions has been 
identified as the causative factor for AS. The human UBE3A gene is 
located within human chromosome 15q11-13 and encodes an E3 
ubiquitin-protein ligase (UBE3A, also called E6 associated protein, E6-
AP). Due to genetic imprinting of the paternal copy of UBE3A gene 
in many brain regions, loss of function of a single maternal copy of 
UBE3A is highly penetrant and pathogenic. Most of the deficits seen in 
AS patients have been reproduced in Ube3a gene maternal deficiency 
mice (‘AS mice’, Ube3am-/p+), thus enabling mechanistic interrogations 
of AS pathogenesis and therapeutic explorations using mice models. 
Here we briefly discuss recent advances on AS etiology and identify 
some challenges in translating mechanistic insights into potential 
therapeutic interventions. Experimental evidence collected so far 
indicate impaired maternal UBE3A in neurons may contribute to AS 
deficiency by influencing multifaceted neural developmental processes 
including cell survival, synaptic transmission, signal transduction, gene 
expressions.

Genetic Abnormality and Phenotypic Presentation
Angelman Syndrome (AS) is first reported and named thereafter 

by pediatrician Harry Angelman in 1965 [1]. AS is a severe debilitating 
neurodevelopmental disorder characterized by mental retardation, 
speech impairment, seizures, motor dysfunction, and a high 
prevalence of autism [2,3]. Bone abnormalities, such as brachycephaly, 
microcephaly, osteoporosis and delayed bone development-associated 
limb deformity and osteopenia are often co-occurring conditions [4-8]. 
AS influences the general population with an estimated rate of 1:10000 
to 1:40000 in U.S. and the United Kingdom [9,10]. 

Loss of UBE3A gene function was identified as the cause of AS by 
two research groups in 1997 [11,12]. The human UBE3A gene encodes 
the E3 uniquitin ligase UBE3A. UBE3A gene is normally expressed in 
neurons only from the maternally inherited allele, while the paternal 
allele is silenced by epigenetic mechanisms known as imprinting. 
Therefore, mutation of the single maternal UBE3A allele in neurons 
leads to near complete loss-of-function of UBE3A gene. In the majority 
of AS patients, UBE3A gene is found inactivated by either intragenic 
mutation, chromosomal micro deletion in the 15q11-13 regions, 
paternal uniparental disomy (UPD), or a defective imprinting center 
(IC) that controls UBE3A transcription [13].

Consistent with this genetic architecture, targeted inactivation of 
Ube3a gene in mice [14] also support the role of UBE3A protein in 
AS; upon inheritance of the mutation through the maternal germline, 
Ube3a mutant mice (Ube3am-/p+, ‘AS mice’) display salient pathological 
features of AS. Critical defects in both morphology and function of 
neurons was found [14]. It is important to note that while deficiency of 
UBE3A causes AS, increased UBE3A gene dosage (e.g. from maternal 

duplications of the UBE3A-spanning 15q11–q13 region [15] appears to 
be associated with intellectual and developmental abnormalities seen 
in autism spectrum disorders, and reproduce most autism features in 
mouse models [16,17]. However, it is currently not clear whether an 
increase in UBE3A dosage alone accounts for the autism phenotypes. 

Molecular studies have revealed that knockdown of Ube3a 
in mouse increases neuronal death, which might be due to the 
accruement of p53 protein, p53-dependent transcription, or deposition 
of intracellular misfolded polyglutamine proteins [18]. In AS mouse 
models, the deficiency of Ube3a protein causes a reduction of dendrites 
spine density and dendritic length in multiple brain areas including 
hippocampus, cortex layer Ⅲ-Ⅴ and cerebellum [19,20]  AS mice 
also show defects of dendrite polarization of pyramidal neurons 
in cortex and hippocampus, decreased dendritic arborization in 
cortex [21] and decreased synaptic vesicle density in hippocampus 
[22]. These morphological changes are consistent with the observed 
functional deficits. For example, decreased miniature excitatory 
postsynaptic currents (mEPSCs) and synaptic plasticity (such as long-
term potentiation (LTP) impairment) are found in AS mouse models 
[23] which involves down-regulated N-methyl-D-aspartate receptor 
(NMDAR) function and deficiency of calcium influx. These evidence 
are indicative that UBE3A is required for normal neuronal activity. 
On the other hand, cellular UBE3A proteins levels are also affected by 
neuronal activity. Filonova et al. [24] recently reported that synaptic 
activation leads to dramatic changes Ube3a neuronal expression. Both 
increased neuronal activity by depolarization or fear conditioning 
behavioral paradigm enhanced neuronal Ube3a levels.  The authors 
also found that in the absence of Ube3a, activity-dependent increase 
in ERK1/2 phosphorylation was impaired.  It may be possible that this 
altered MAPK pathway may underlie the impaired synaptic plasticity 
and cognitive function in AS mice. 

Intriguingly, experience-dependent maturation of excitatory 
cortical circuits, and visual cortex function associated with ocular 
dominance plasticity were found impaired in AS mice, suggesting 
Ube3a is necessary for maintaining developmental cortical plasticity 
and its loss-of-function may contribute to AS pathophysiology [20]. The 
same research group also reported that dysfunction of Ube3a resulted 
in deficits of fast-spiking inhibitory interneurons in cortex layer Ⅱ-Ⅲ 
and an abnormality of presynaptic vesicle release [25]. Consistent with 
the role of Ube3a in plasticity, a recent study demonstrated that the 
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type 5 metabotropic glutamate (mGluR5) receptors-dependent LTD 
was potentiated in the hippocampus in AS mice [26]. It has been also 
reported that parvalbumin-positive (PV) interneurons in AS mice 
are more vulnerable than those of wild type mice in responding to 
chronic stress. Chronic stress treatment leads to more pronounced 
decrease of PV neurons in the hippocampus and basolateral amygdala 
of AS mice, a process that can be antagonized with fluoxetine [27].  AS 
mice also show abnormality in behavior related to the malfunction 
of basal ganglia circuits (e.g. instrumental conditioning). These mice 
have severe difficulty in initial acquisition of lever pressing, and were 
more habitual and impervious to changes compared with the wild-type 
control ones. Electrophysiological results revealed that both amplitude 
and frequency of mEPSCs are decreased in the dorsomedial striatum 
in AS mice, suggesting specific impairment of synaptic function in an 
associative corticostriatal circuit [28] that is also shared by the autism 
spectrum [29].

Pathophysiological and Molecular Changes
A number of combined genetic and molecular studies have shed 

light on AS etiology. The UBE3A protein, first identified as the mediator 
of human papillomavirus types 16 and 18 E6 protein [30,31], regulates 
ubiquitin-mediated degradation of many proteins, such as the human 
homologues of yeast Rad23 (HHR23A), which is involved in DNA 
repair [32], the Src family member Blk [32] and the Rho-GEF pebble 
(pbl).  Many other proteins are regulated by UBE3A when expressed 
in Drosophila [33]. These proteins include intracellular proteins such 
as misfolded polyglutamine proteins [18], annexin A1 [34] and the 
Hsp70/Hsc70 chaperones bound substrates [35] etc.   

It has been found that various genetic mechanisms cause the loss 
(deletion or UPD), inactivation or mutations of maternal UBE3A gene 
(located in chromosome 15q11–13) [36], (Table 1). Imprinting for 
15q11-q13 genes is controlled by a bipartite imprinting center (IC). 
This IC includes the Angelman syndrome imprinting center (AS-IC) 
and the Prader–Willi syndrome imprinting center (PWS-IC) [37-39]. 
Silencing the paternal copy of UBE3A gene is likely through paternal 
expression of a large antisense RNA transcript of UBE3A (UBE3A-ATS) 
and snoRNAs (small nucleolar RNAs) in neurons [11,12,40]. It was 
found that the two types of RNA transcript, sense and antisense, both 
the products of Ube3a gene, are expressed in a cell-type specific way 
in the brain. Neurons express maternal sense and paternal antisense, 
whereas glia express biallelical sense [41]. Furthermore, the disruption 
of maternal Ube3a gene resulted in an increase of paternal Ube3a-ATS 
in AS mouse model [42]. The Ube3a-ATS illustrated the inhibitory 
effect on the expression of paternal UBE3A gene [43], and is consistent 
with a large scale screening that revealed that maternal biased genes 
are significantly related to the developing brain [44]. Another study 
further support that the impaired function of UBE3A in AS patients 
is related to ubiquitin ligase instead of to its functional coactivator of 
transcription of the nuclear hormone receptor superfamily, such as 
the progesterone receptor (PR) [45]. The disturbance of the ubiquitin 
ligase activity gives rise to the impairment of protein ubiquitination 
[46] . A recent study showed that the expression level of paternal Ube3a 
is decreased in mouse neurons after the first postnatal week during 
which these neurons are undergoing rapid maturation. At the same 
time, the decrease of paternal Ube3a was accompanied by the nuclei 
accumulation of Ube3a of maternal origin. Interestingly, in contrast to 
neuron, glia cells (both astrocyte and oligodendrocyte) seem to express 
Ube3a biallelically [47].    

The detailed mechanisms on how deficiency of UBE3A leading to 

AS are poorly understood. Studies using AS mice have provided some 
mechanistic insights by demonstrating that Ube3a plays a pivotal role 
in multiple CNS developmental processes, including cell cycle, signal 
transduction, transcription and synaptic plasticity [40]. One possible 
mechanism may be that changes of Ube3a expression can influence 
the viability of neurons. It was reported that the post mitotic neonatal 
neurons are decreased after maternal Ube3a inactivation in AS mouse 
hippocampus [48]. The loss of neurons may be due to either impaired 
metabolism or the disturbance of genes involved in cell death process 
[49], or both. It was also shown that mitochondria in AS mouse 
exhibited a smaller size in the hippocampus and a partial oxidative 
phosphorylation defect in the whole brain [22]. Another study revealed 
that proliferation of neurons was disrupted in AS mice due to the 
increased expression of cyclin-dependent kinase inhibitor p27, whose 
degradation is mediated by the Ube3a [50].  

Another potential mechanism is that protein synthesis including 
receptors expression can be affected by Ube3a dysfunction. A recent 
study showed that the Golgi apparatus (GA) cistern was swollen and 
disorganized in Ube3a maternal deficiency mice, and the pH in GA 
lumen is increased in cortical neurons. This has implication that a 
less acidified GA would result in impaired protein sialylation and 
secretion mechanisms [51].  Previous researches also showed that 
Ube3a regulate the degradation and turnover of RhoA-GEF Ephexin-5, 
activity-regulated cytoskeleton-associated protein (Arc), p53, and p27 
via ubiquitination [13,52,53]. It has been reported that Arc protein 
can promote endocytosis of the α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid-type glutamate receptor (AMPAR), thereby 
reducing cell surface functional glutamate receptors by facilitating 
their interaction with dynamin and endophilin [54]. It is not surprising 
that AMPAR quantity at excitatory synapses was also found decreased, 
in correlation with an increase of Arc expression after Ube3a function 
was disturbed in neurons [20,55]. 

Another hypothetic cause is that Ube3a abnormality disturbs 
the regulation of gene expression. A recent study demonstrated that 
levels of both Ring1B, which ubiquinates nucleosomal histone H2A to 
regulate gene expression, and histone H2A, are elevated in many tissues 
in Ube3a knockout mice [56]. One recent study found that 7 genes are 
increased and 57 genes are decreased in AS mouse. These genes are 
functioning in signal transduction, nervous system development and 
cell death. Some of those genes (Fgf7, Glra1, Mc1r, Nr4a2, Slc5a7 and 
Epha6) are confirmed of relevant with AS phenotype [49]. It was also 
shown that elevated Arc level in AS mouse disturbs the brain-derived 
neurotrophic factor (BDNF) to recruit the postsynaptic density-95 
(PSD-95) protein, disrupts  association of PSD-95 with TrkB, and 
the association of PLCγ and Grb2-associated binder 1 (Gab1) with 
TrkB, therefore impairing BDNF, TrkB and PI3K-Akt pathways 
[57]. Another recent study found that the expression of α1 subunit of 
sodium/potassium-ATPase (α1-NaKA) is increased in hippocampus in 
AS mouse. The abnormal expression likely explains a series of changes 
such as elevated axon initial segment proteins and altered membrane 

Note: According to a report by Ramsden et al. 2010, and also based on the data 
from the public database Decipher (https://decipher.sanger.ac.uk).

Genetic abnormality Percentage in AS cases
Maternal deletion of 15q11-13 (De novo) ~70% 
Paternal UPD 2-5% 
Imprinting defects 2-5%
Mutations/variants of UBE3A gene ~5-10 %
Other causes unidentified ~10 %

Table 1: Ascertained genetic abnormalities in AS*.
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properties including resting potential, threshold potential and action 
potential. These alterations were corrected by reducing α1-NaKA 
genetically [58]. This study suggests loss of Ube3a leads to changes 
in neuronal excitability likely through altered membrane biophysical 
properties.

Therapeutic Explorations
The current efforts in therapeutic exploration for AS have been 

taken on identified putative pathological basis. A conspicuous idea 
would be to restore the function of the UBE3A in the brain, by retrieval 
either maternal or paternal copy of the gene. For restoration of maternal 
Ube3a, one study used recombinant adeno-associated virus (rAAV) 
to introduce type 2 terminal repeat (TR2) flanked Ube3a into the 
hippocampus of adult AS mice. The study found that rAAV restored 
the level of Ube3a in AS hippocampus, rescued the impaired of LTP, 
and enhanced the cognitive learning as evaluated by Morris Water 
Maze test [59]. These rescue experiments suggest that neuronal circuit 
deficits can arise from lack of Ube3a function per se, and restoration 
of Ube3a expression could potentially overcome certain aspects of 
developmental deficits.  

The existence of the intact paternal UBE3A allele has the intriguing 
implication that activation of the silent allele may be able to fulfill 
the functions of the missing maternal ones, in a way analogous to 
rescuing neural deficits in adult Mecp2 knockout mice by reinstating 
the functional Mecp2 gene [60]. In an elegant genetic study, Meng et 
al. showed that inhibition of Ube3a-ATS expression both in vivo and 
in vitro could elevate expression of paternal Ube3a [61]. The activation 
of paternal Ube3a could be achieved by blocking the paternal Ube3a-
ATS with poly-adenine cassette insertion in AS mouse models. Many 
resulting AS deficiencies, such as impaired LTP, cognitive deficits, 
and motor dysfunction were ameliorated [61]. Restoring the paternal 
Ube3a expression through non-genetic approaches also seems to 
hold great promises. Through chemical library screening, Huang et 
al. (2012) have found that several topoisomerase inhibitors, such as 
topotecan and irinotecan could resuscitate paternal Ube3a and rescue 
cellular function in neurons [62]. Although topoisomerase inhibitors 
lack specificity on neurons and are likely to be toxic to many tissue 
types, this study represents a major conceptual breakthrough by 
showing that rescuing the dysfunctional UBE3A gene in brain can be 
achieved through bypassing the genetic manipulations.

Maternal Ube3a deficiency in mice is known to impair synaptic 
transmission and interfere with a critical molecular player in synaptic 
plasticity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) 
[20,23]. Weeber et al. showed that AS mice had impaired hippocampal 
long-term potentiation (LTP) and reduced context-dependent learning, 
which is correlated with an increased CaMKII phosphorylation at 
Thr305/Thr306 inhibitory sites and a reduced kinase activity [23].  
In a following study [63], the same group further crossed female AS 
mice with heterozygous males that carried the targeted CaMKII-
T305V/T306A mutation, a genetic manipulation that prevents 
inhibitory phosphorylation of CaMKII and elevates CaMKII activity. 
Intriguingly, a reduction of CaMKII inhibitory phosphorylation was 
able to rescue the motor deficits, seizures, LTP impairment and the 
hippocampus dependent learning.  Collectively, these findings indicate 
misregulation of CaMKII may be a molecular substrate underlying the 
neurobehavioral deficits in AS.  The notion that restoring affected signal 
transduction pathways may alleviate AS pathology is also supported 
by another recent study [57]. Cao et al. reported that altered LTP in 
AS mouse model can be corrected after the TrkB signal pathway was 

restored by using a bridged cyclic peptide (CN2097) to interfere the 
interaction between the increased Arc and PSD-95.

Outstanding Questions and Major Challenges
Despite these emerging successes in restore neural functions in AS 

mouse models, outstanding questions and challenges remain in the 
field. For example, 

1. What is the definite role of UBE3A in neural connections or 
circuits within and between many brain regions, and in what molecular 
context is UBE3A involved to regulate synaptic development, 
transmission, and plasticity? Why increased UBE3A dosage is more 
represented in autism spectrum disorders [16,17] ? 

 2. How does UBE3A differentially affect both excitatory and 
inhibitory synapses, favoring an enhanced local circuit hyper-
excitability [20,25]?

3. The molecular mechanisms by which UBE3A deficiency lead 
to AS remain enigmatic. The protein substrates of UBE3A in neurons 
remain to be identified [10].  Arc, Sacsin, HHR23A and Ephexin 
5 represent only a small number of proteins known to be directly 
regulated by UBE3A in neurons. Revealing more neuronal molecular 
substrates or interactomes and how deficiency of maternal UBE3A 
disrupts cellular homeostasis can be illuminating for AS pathogenesis 
and molecular intervations.  

4. The dramatic variations of symptoms among AS patients imply 
the contributions of other elusive and perhaps much more complex 
causes other than maternal UBE3A dysfunction. For example, other 
genes such as GABAA receptor β3 subunit (GABRB3) gene which 
locates within the chromosome 15q11-13 locus have been proved 
playing a role in the AS development. The impaired expression of 
GABRB3 can render featured phenotypes of AS in mice. These results 
raised the questions of the definite role of the GABRB3 and its relation 
to UBE3A in AS genesis [64]. 

5. Some discrepancies exist between AS model mouse behavior and 
AS patient clinical features. AS mice showed normal social seeking and 
activity level in contrast to the frequently observed behavioral deficits 
of AS patients [65]. This may be explained by the larger size of genetic 
defect in patients than that of the AS mice. Further observations on 
the variations in eating behavior and body growth among patients with 
different genetic deficits, specifically patients with big deletion or ones 
with UPD implied that other factors within the 15q11-13 locus may 
play a role in the pathogenesis too [36,66].

6. On the forefront of AS therapeutic endeavors, the potential 
of topoisomerase inhibitors in restoring UBE3A expression and 
correcting AS pathophysiology awaits further experimental validation 
and extrapolation.
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