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Introduction
In hypothesis testing, p-value is routinely used as a measure of

statistical evidence against the null hypothesis, where a smaller p-value
indicates stronger evidence substantiating the alternative hypothesis.
P-value is the probability of type-I error made in a hypothesis testing,
namely, the chance that one falsely reject the null hypothesis when the
null holds true. In a disease genome wide association study (GWAS),
p-value potentially tells us how likely a putative disease associated
variant is due to random chance. For a long time p-values have been
taken seriously by the GWAS community as a safeguard against false
positives. Every disease-associated mutation reported in a GWAS must
reach a stringent p-value cutoff (e.g., 10-8) in order to survive the
multiple testing corrections. This is reasonable because after testing
millions of variants in the genome, some random variants ought to
yield small p-values purely by chance. Despite of p-value’s theoretical
justification, however, it has become increasingly evident that
statistical p-values are not nearly as reliable as it was believed. It has
not been uncommon for a GWAS to identify some very significant
associations that later turn out to be false positives. The current routine
is therefore to require every reported genetic variant for a disease to be
replicated at least once, which is a much more reliable criterion against
false positives.

Type-I Errors in GWAS
The problem often arises in the miscalculation p-values. Calculating

p-values under the null hypothesis is not as simple as introduced in
textbook, because the null hypothesis made in practice are often too
simplistic. In a case control study, for instance, the samples are often
assumed independent and sufficiently large, for which statistical theory
allows us to calculate p-values analytically. In reality, such assumptions
are almost never met due to human inheritance and sample
availability, both of which may either inflate or deflate theoretical p-
values. Such issues were recognized early on, and numerous statistical
methods have been developed to account for sample relatedness,
including genomic control, sample matching, model-based
stratification detection, and more recently generalized mixed effect
models. Numerical solutions for calculating p-values in finite samples
have also been extensively developed, including various permutation
methods, Monte Carlo Markov chain simulations, and methods
adjusting for multiple comparisons. While these computational
solutions have been useful, new methods are constantly needed to
accommodate new study designs and new data characteristics
generated by improved technologies in GWAS. Rare variant, for
example, is currently thought by many as the key to disease missing
heritability, and is being intensively studied. Because of their low
frequency in the population, none of the existing asymptotic theories
applies. In fact, how to best test rare variants, adjust for sample bias
and evaluate their significance are open questions.

Type-II Errors in GWAS
Type-II error in hypothesis testing refers to falsely accepting the null

hypothesis when the alternative is true, and its complement, power, is
the more familiar term in GWAS. Most existing GWAS are
underpowered due to limited sample size and small effects of disease
variants. Optimizing power in GWAS is therefore an important and
challenging problem. Without increasing sample size, there are several
alternative approaches to improve. First, one may gain power by
developing better test statistics or computational methods that more
efficiently capture the true signals in a disease model. Most statistical
methods belong to this category, such as tests for dominant, recessive,
or haplotype effects, epistasis association mapping methods, burden
tests and vibrational methods for testing cumulative effects in rare
variants. Depending on the underlying disease model, some methods
may outperform the others, but there will be no most powerful
methods for all scenarios. Secondly, one may combine independent
studies of the same or similar diseases together, followed by variant
imputation and joint analysis. Assuming that multiple studies carry a
similar set of disease variants, joint analysis of the combined results
can effectively increase sample size and thus improve power. This
strategy has been used to combine tens or hundreds of thousands of
samples from different studies and successfully revealed many new
disease variants that are otherwise undetectable in individual studies.
Thirdly, one may leverage information from orthogonal data sets to
help narrowing down the regions and sets of variants for disease risks.
This approach can effectively reduce the search space and thus increase
power. Examples include population origin information in admixed
sample, haplotype structures, gene annotations, and various functional
data sets (e.g., expression, epigenetic marks, chromatin accessibility,
conservation, motif, etc.). This latter approach of using functional data
in GWAS is relatively new, and it has quickly gained popularity, not
only due to the availability of a plethora of functional data generated
by high throughput sequencing, but also that it has the potential to
unveil the functional roles of genetic variants in disease. With
increasing evidence suggesting that there may be hundreds or
thousands of genetic mutations affecting the risks of complex traits,
most of which may have very small effects, one needs to think out of
the box and develop novel integrative methods to combine all
information to gain power in GWAS.

Type-III Errors in GWAS
Although this term is purely statistical, its meaning is not unfamiliar

to the GWAS community. Type-III error refers to making a right
decision by wrong reasons. A most typical example is that a significant
association detected in GWAS is due to genotyping errors. That is, a
variant violates the null hypothesis not because it is associated with the
disease. In fact, genotyping issues are so common that every GWAS
requires stringent quality control before inference is made. Another
common scenario that causes type-III errors, which is much less
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appreciated, is the effect of linkage disequilibrium (LD). Considering
two variants in LD, where one is causal and the other is not, or both are
not but tagging some untyped causal variants. When testing the two
variants, both may turn out to be significant, although only one or
perhaps none is causal. At first glance, this is a harmless known fact
that tagging variants are not causal variants. What is not being realized
is that LD effects can substantially increase false discoveries in the
genome scale. Using the major histocompatibility complex (MHC) in
human as an example, the region has mega-base pair long LD blocks
that often yield many hundreds of significant variants in autoimmune
diseases, most of which are due to LD effects. If one includes the MHC
region with the rest of the genome and calculate an overall false
discovery rate (FDR) at 0.05 levels, then 5% false positives
(corresponding to ~50 false positives raised by MHC) will be tolerated.
These 5% false positives are randomly distributed in the genome. So
after grouping nearby significant variants, there will be just 1 true
positive loci at MHC and 50 false positive loci elsewhere, leading to
98% FDR! This highlights the discrepancy between statistical and
biological significance: the hundreds of significant variants in MHC
are true positives in the statistical sense, but they are essentially all
tagging a single causal variant in the biological sense, and thus should
be counted as one.

Conclusion
While p-value tells us how much the data substantiate the

alternative hypothesis, its usage has not been most appropriate in

GWAS. On one hand, the null hypothesis setup in a GWAS is often
overly simplistic that does not include all possible scenarios that may
induce signals other than disease association. On the other hand, most
disease association tests (and hence p-values) in GWAS are calculated
using genetic data alone, which have not been accounting for the large
amount of non-genetic information about the genome that may
improve the power of association mapping. The importance of p-values
in GWAS has therefore been decreasing, with each GWAS having to
replicate its disease variants in addition to genome-wide significance. It
is very likely that the use of p-values in GWAS will continue to decline.
In fact, there are other statistics that also measure statistical evidence
in the data, such as Bayes factor, but is better than p-values. Bayes
factor can be more robust than p-values and are more flexible in terms
of modeling a complex null or alternative hypothesis. This will be
important for big data, because not only the true signals will be
amplified in big data, but also non-random bias in the data will
become detectable when there are enough samples, for which the null
hypothesis will almost never be simple. Finally, one must remember
that there is always a difference between statistical significance and
biological significance. Additional important aspects of GWAS results,
such as reproducibility and interpretability, should always be evaluated.
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