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Abstract

Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an
overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to
normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The
production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant
systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance
in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as
augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The
limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel
experimental approaches for the development of improved antioxidant therapies.
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Introduction
Oxidant/antioxidant imbalance has been implicated in the

pathogenesis of diseases affecting every organ system, including the
lung and pulmonary vasculature. The field has significantly evolved
from the early investigations that defined the source of excess
production of Reactive Oxygen Species (ROS), identified the
antioxidant systems, both enzymatic and non-enzymatic, and
established that oxidative stress damages cell structures. These early
studies were followed by the discovery of nitric oxide (NO●) as a
biologic signaling molecule, and the emerging field of redox biology,
the study of reactive oxygen and nitrogen species as signaling
molecules through specific, regulated and targeted modifications.
Numerous clinical trials have tested different strategies to protect
against oxidative stress or restore physiologic NO activity in lung and
pulmonary vascular diseases, though the results have overall been
disappointing. This review article will highlight the major oxidant and
antioxidant systems in the lung; provide a framework to understand
redox-regulated signaling; review the clinical trials aimed to restore
NO bioactivity, scavenge ROS or replete deficient antioxidants in a
range of lung diseases; speculate on the reason for the overall
insufficient clinical responses; and provide an overview of new
therapeutic strategies currently under investigation designed to
overcome the limitations with current therapies.

Overview of ROS/Antioxidants in the Lung

ROS/RNS production from endogenous sources and their
role in lung diseases

Endogenous oxidant-antioxidant systems have an important role in
lung diseases. Reactive radical species are ubiquitous in nature,
produced from endogenous and exogenous sources. Cellular organelles

such as mitochondria and peroxisomes are major sources of reactive
oxygen (ROS) and nitrogen species (RNS) [1,2]. In the mitochondrial
electron transport chain, unpaired electrons are generated by oxidative
phosphorylation, which reduces molecular oxygen, leading to the
production of superoxide anion (O2

●-). Superoxide is rapidly reduced
to hydrogen peroxide (H2O2). Peroxisomes are cell organelles that
contain oxidases and catalases. These enzymes play a key role in
normal metabolic pathways that contribute to the catalysis of ROS and
RNS byproducts, implicating peroxisomes as a major source of
oxidative stress. Some of the major enzymatic sources of ROS and RNS
include flavoproteins that produce H2O2, and xanthine oxidase and the
nitric oxide synthases that produce O2

●- and NO● [3-5]. A number of
other important cellular enzymes such as Nicotinamide Adenine
Dinucleotide Phosphate (NADPH) oxidase, lipooxygenases, uncoupled
endothelial nitric oxide synthase (eNOS), and cytochrome P450,
contribute to the production of ROS/RNS that play a role in lung
diseases [6-9]. Non-enzymatic production of reactive species also
occurs through metal-catalyzed oxidation such as the Fenton reaction
(Fe2+ + H2O2 → Fe3+ + OH- + OH●) or thermodynamic reactions of
NO● with O2

●- to form peroxynitrite (ONOO-) [10,11].

ROS/RNS production from exogenous sources and their role
in lung diseases

Production of reactive species from exogenous sources such as
environmental toxins and diet promote the onset of lung diseases.
Classical examples of lung injury caused by environmental toxins
include exposure to paraquat (a commonly used herbicide) and
chronic ethanol consumption. Paraquat poisoning has been shown to
induce oxidative stress and increased expression of cystine/glutamate
transporter, Nrf-2 regulated mitochrondrial dysfunction, and
inflammation in the lung [12-14]. While dietary phenols (i.e.
resveratrol) have shown to inhibit paraquat-induced oxidative stress
[15], phenols (curcumin and resveratrol) can also regulate oxidative
stress and inflammation by activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and activator protein 1
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(AP-1) [16]. Chronic ethanol consumption is associated with increased
incidence of Acute Respiratory Syndrome (ARDS), where one
proposed mechanism is the up-regulation of epithelial sodium channel
(ENaC) activity via ROS-induced cysteine modification in the lungs
[17]. Other examples include the induction of oxidative stress by
numerous environmental toxins due to disruption in cytochrome P450
(CYP) metabolism. Sulfur mustard inhibits NADPH CYP reductase
[18]; diesel exhaust particles induce CYP and NADPH quinone
oxidoreductase-1 expression, and nuclear factor erythroid 2–related
factor 2 (Nrf2) nuclear translocation [19]; and arsenic, asbestos, and
tobacco carcinogens elevate CYP expression and activity. These
changes affect pulmonary immune/inflammatory responses or
contribute to the development of lung cancer [20-22].

Antioxidant systems
Antioxidants exist as enzymatic or non-enzymatic systems that help

restore oxidative balance to maintain cell homeostasis. Superoxide
dismutases present in the cytoplasm (SOD1), mitochondria (SOD2), or
extracellular compartments (SOD3) catalyze the dismutation of O2

●-

into oxygen (O2) and H2O2. Catalases, present in the cytoplasm and
peroxisomes, further catalyze the breakdown of H2O2 into O2 and
water, while peroxiredoxins catalyze the reduction of H2O2. Another
class of enzymes in the thioredoxin and glutathione systems includes
reductases and peroxidases that detoxify compounds such as ROS and
lipid peroxides. These enzymes have been shown to have important
protective roles in lung diseases [23-31]. Non-enzymatic antioxidants,
present endogenously or by dietary intake, are small molecular weight
compounds that scavenge free radicals. Of importance to
hypertension, ARDS, asthma, cystic fibrosis, Chronic Obstructive
Pulmonary Disease (COPD), infections and cancer are: Glutathione
(GSH), a cysteinyl tripeptide; uric acid, an oxypurine produced from
xanthine/xanthine oxidase; ascorbic acid (vitamin C), a
monosaccharide redox catalyst; and tocopherols/tocotrienols (vitamin
E), fat-soluble vitamin that protect membranes from lipid peroxidation
radicals [32-38].
Physiologic function – oxidants and antioxidants in homeostasis

Endogenous oxidant-antioxidant systems have physiologic
functions important in cell homeostasis and cellular adaptation to
environmental stress. ROS production as part of the respiratory burst
in inflammatory cells has been long recognized to protect against
invading organisms; individuals with Chronic Granulomatous Disease
are immunocompromised due to defects in the leukocyte to generate
O2

●- via NADPH oxidase (gp91phox or NOX2). The role of NO● as a
biologic signaling molecule has also been clearly established, with a
role in maintaining vascular tone, neurotransmission and normal
immune function. Accumulating new data implicates a key role for
ROS in signaling pathways important in multiple processes including
proliferation, differentiation, immune function, and vasoregulation.
Examples include ROS and 4-hydroxy-2-nonenal (HNE) induced
vascular cell proliferation and angiogenesis [39,40], H2O2 regulation of
bone marrow-derived stem and progenitor cell function [41],
ROS/RNS regulation of neutrophil and monocyte function [42,43],
and ROS signaling that regulate pulmonary vessel tone, kinase-
modulated vascular function, and mechanical stretch-induced vascular
remodeling [44-46].

Pathophysiologic function – oxidants/antioxidant imbalance
in disease pathogenesis
The pathophysiology of oxidative stress occurs when there is an

imbalance in oxidant-antioxidant systems. An accumulation of highly
reactive molecules causes generalized damage to DNA, lipids, proteins
and carbohydrates. There are well-established methods to measure
oxidative stress in disease states, shown for example by increased lipid
peroxidation products, DNA oxidation, and protein carbonyl
formation in lung tissue. While lipid peroxidation can be a marker of
excess ROS production, oxidized lipids are also potent signaling
molecules. Isoprostanes, for example, are byproducts of membrane
lipid peroxidation that provoke bronchoconstriction and airway hyper-
responsiveness in asthma, and powerful vasoconstriction in
pulmonary arterial hypertension and acute lung injury [47,48]. Certain
highly reactive ROS are associated with indiscriminant oxidative or
nitrosative stress, such as hydroxyl radical (●HO) or ONOO-. In
contrast, H2O2, NO●, and O2

●- have relatively longer half-lives, and
specific cellular targets that enable them to function as signaling
molecules. Sustained or increased production of these ROS/RNS
promotes alterations in cell signaling responsible for disease
progression. These species can regulate enzyme function including
kinases and phosphatases, G-protein or tyrosine kinase receptors, ion
channel function, and transcription factors, resulting in an impact on
numerous downstream pathways.

Overview of redox-regulated signaling
Redox regulated signaling pathways are increasingly recognized as a

major mechanism to regulate cellular function. As signaling molecules,
ROS and RNS have specific targets that impart their signaling
properties and determine their biologic effects. It is well-established
that NO● activates guanylate cyclase by binding to the heme moiety,
leading to increased cyclic guanosine monophosphate (cGMP)-
dependent vasorelaxation. NO● can also lead to vasorelaxation via
cGMP-independent mechanisms, for example, by inhibiting the effects
of serotonin or alpha-adrenergic agonists on their respective G-protein
coupled receptors to blunt vasoconstriction [49]. Both ROS and RNS
can directly modify reactive cysteine residues, which represents a
major mechanism for redox regulated signaling [50]. Post-translational
modifications include disulfide bond formation, reduction, oxidation,
nitrosylation, and glutationylation, which alter protein function.
Important to lung diseases is S-glutathionylation that uncouples eNOS
[51,52] which regulates vascular tone, and S-nitrosylation caused by
smoke or chronic airway inflammation in asthma [53,54].
Downstream consequences include modulation a number of cell signal
transduction pathways that disturb cell homeostasis [55]. Reactive
oxygen or nitrogen species usually have specific targets that are tightly
regulated. The reactions are also usually rapid, reversible and occur in
specific tissue and cellular compartments. Pathways relevant to lung
diseases include regulation of kinase and phosphatase activity on
growth factors and growth factor receptors that affect smooth muscle
cell proliferation [56,57] or endothelin-1 that mediates pulmonary
vasoconstriction [58]; regulation of transcription factors such as
nuclear factor kappaB (NFκB), tumor suppressor p53 and hypoxia-
inducible factor 1-alpha (HIF-1α) that control expression of genes
involved in pulmonary vascular inflammation and remodeling [59-61];
and regulation of molecular adaptors and chaperones such as heat
shock protein 90 (HSP90) interactions with eNOS that contribute to
endothelial dysfunction associated with pulmonary hypertension
[62-64].
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NADPH- and GSH-dependent enzymes also play an important role
in redox regulated signaling in lung diseases. ROS produced by
lipoxygenases and NOX regulate pro-inflammatory responses in
allergic airway inflammation [6], while NADPH:quinone
oxidoreductase 1 (NQO1) upregulation is a Nrf2-dependent process
relevant to macrophage-derived oxidants involved in the pathogenesis
of ozone-induced oxidative stress, airway inflammation, and
emphysema [65,66]. GSH peroxidases, S-transferase, and reductase
modulate GSH and NADP homeostasis which, when altered, induce
signaling pathways that promote airway inflammation in COPD and
asthma [67-71].

Strategies to restore redox balance in human disease
Multiple clinical trials have tested a range of therapies designed to

restore oxidant/antioxidant imbalance. These strategic approaches can
broadly be classified as agents that restore NO● bioactivity in the
setting of deficient NO●; block NO● production in the setting of excess
NO●; replace deficient antioxidants, in particular GSH and non-
enzymatic antioxidants including vitamins and micronutrients; or
scavenge ROS (Figure 1). We provide important examples of trials that
represent each of these categories of therapeutic approaches, most of
which have ultimately had limited or no success in treating lung or
pulmonary vascular disease. We propose that there are a number of
general problems with the current therapeutic approaches related to
the dose and half-life of delivered antioxidants; targeting of the
treatment to the proper tissue or cellular compartment; selection of
patients based on disease rather than antioxidant status; and
disruption of the physiologic role of the oxidants.

Figure 1: Therapeutic approaches to restore redox balance. 1)
Augment NO˙ bioactivity catalyzed by nitric oxide synthase; 2)
Block production of ROS produced by mitochondrial electron
transport chain, NADPH oxidase, xanthine oxidase or uncoupled
NOS; 3) Scavange toxic oxidants by replacing deficient enzymatic
and non-enzymatic antioxidants such as SOD, catalase, GSH,
ascorbic acid, tocopherol, and carotenoids.

Strategies to augment NO● bioactivity
Based on the role of NO● dysregulation in pulmonary vascular

disease and promise in animal studies, a number of therapeutic
approaches have been developed to restore NO● homeostasis in the
lung and pulmonary circulation including inhaled NO● (iNO),
phosphodiesterase inhibitors, and recombinant SOD1. iNO has been

studied in pulmonary hypertension as a selective pulmonary
vasodilator, in ARDS to improve ventilation-perfusion matching, and
in preterm infants to prevent chronic lung disease. While iNO does
decrease the need for rescue therapy with extracorporeal life support in
full term infants with persistent pulmonary hypertension, it does not
improve mortality [72,73]. This remains the only currently FDA
approved indication for iNO. iNO failed to improve meaningful
clinical outcomes in other clinical settings. iNO treatment for ARDS in
adult and pediatric patients showed no change in vent free days or
mortality outcomes, and in premature infants, iNO failed to influence
later development of bronchopulmonary dysplasia (BPD) [74].
Another strategy is the use of phosphodiesterase 5 (PDE5) inhibitors
such as sildenafil, to block breakdown of cGMP, enhancing the activity
of the second messenger of NO● responsible for smooth muscle
relaxation in airways and vasculature. Sildenafil is an approved therapy
for adults with pulmonary arterial hypertension, though its use in
pediatric pulmonary hypertension is not recommended due to safety
concerns [75-80]. Human recombinant SOD1 has also been tested as a
means to increase NO● bioavailability by preventing the inactivation of
NO● by O2

●-. In preterm infants, human recombinant SOD was
ineffective at improving 28 day mortality infants, though modestly
decreased later development of reactive airway disease and possibly
decreased retinopathy of prematurity [81-83]. Overall, despite
abundant research demonstrating loss of NO● bioactivity in a number
of settings, the clinical utility of the current available therapies has
been quite limited and may require alternative strategies.

Strategies to block ROS/RNS production
Though some pulmonary vascular diseases are associated with

deficient NO● production, other diseases are characterized by
overproduction of ROS or NO●, leading to oxidative and nitrosative
stress. Numerous laboratory studies of lung and pulmonary vascular
disease demonstrate protection when ROS/RNS production is ablated,
thus this is another strategy that has also been considered in the
clinical research arena. A variety of inhibitors are available that block
ROS/RNS production via NOX, xanthine oxidase, NOS, or
mitochondria. In the clinical setting, human circulatory shock is
characterized by excess production of NO● by inducible NOS, which
contributes to catecholamine-refractory hypotension. One multicenter
randomized controlled study evaluated a non-specific nitric oxide
synthase inhibitor, 546C88 to test its ability to improve hypotension
and organ perfusion. Unfortunately, this strategy not only failed to
protect, but in fact increased mortality in this patient population [84].

Strategies to scavenge oxidants
Numerous studies have tackled the problem of oxidative stress by

delivering enzymatic or non-enzymatic antioxidant therapies. N-
Acetyl cysteine (NAC) is perhaps the most well studied antioxidant,
used for over 40 years and possessing multiple antioxidant effects. It
acts as a direct powerful free radical scavenger, replenishes depleted
GSH stores and also imparts anti-inflammatory effects [85]. Despite
these potential beneficial effects, clinical trials using inhaled or
intravenous NAC have failed to demonstrate mortality benefit in many
diseases such as asthma, ARDS, systemic inflammatory response
syndrome or sepsis. However, in some studies, potential improvements
in secondary clinical outcomes were observed with NAC, such as faster
recovery in ALI [86], improved oxygenation and decreased ventilator
[87], and less frequent exacerbations in COPD [88]. In contrast, other
studies have raised concerns about cardiac depressant effects of NAC,
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particularly in patients with sepsis [89]. The utility of NAC in lung
injury remains uncertain, with no clear indications for use.

Antioxidant scavenging can be augmented by modifying nutrition,
particularly vitamins, trace elements and specific amino acids that have
either direct antioxidant effects, serve as precursors or cofactors for
antioxidant enzymes, or support immune function. Deficiencies in
several antioxidant vitamins including zinc and selenium, and amino
acids have been observed in critically ill adult and pediatric patients,
and the degree of deficiency often correlates with severity of disease, as
is the case with selenium deficiency in severe sepsis [90-93].

Although these dietary factors are promising, readily accessible and
easily modifiable targets, results in clinical trials have generally been
discouraging. For example, although initial meta-analysis evaluating
multiple smaller RCT’s of combination antioxidant micronutrient
supplementation suggested an improvement in outcomes, particularly
those at high risk of death [94], a subsequent large randomized
controlled study showed harm with early glutamine supplementation
and no improvement with antioxidants in critically ill patients [95].
Interestingly, in this study the subset of patients randomized to receive
selenium were not deficient in selenium, as described in multiple other
studies.

Why have antioxidants failed to cure lung disease?
Despite abundant evidence that oxidative stress is not mere

epiphenomena of disease processes, these studies highlight the lack of
efficacy with the current antioxidant therapeutic approach in
numerous clinical trials. There are a number of reasons why these
therapies failed to improve outcomes in human lung diseases. These
relate to the selection of the appropriate dose, targeting of the
antioxidant to the appropriate tissue or cellular compartment, impact
on physiologic function of ROS/RNS, or failing to account for genetic
or epigenetic factors or selecting the appropriate patient population.
We will review each of these limitations and challenges below.

Inadequate dose of antioxidants
The ability to deliver the appropriate dose of antioxidant with a

suitable half-life poses the first challenge. First, little is known about
specific therapeutic levels of antioxidants in which to base dosing
regimens. Secondly, due to the need for compensatory increase in
antioxidants during times of high oxidative burden, a “therapeutic”
level is likely to be a dynamic target depending on the disease state.
Guidance for intake of some antioxidant vitamins or nutrients is
provided in the form of recommended daily allowances. However,
these “allowances” are unlikely to achieve a truly therapeutic level
during critical illness, due to higher requirements due to metabolic
demands, unpredictable absorption of enteral antioxidants, altered
volume of distribution due to capillary leak, and general increased
production of ROS/RNS during critical illness. A third challenge in the
delivery of antioxidants is the short half-life of endogenous and
exogenously supplemented antioxidants, as is the case with
recombinant SOD1 [81,83]. This presents a significant challenge in the
development of antioxidant enzymatic therapies so that they can be
not only safe and efficacious but also appropriately dosed.

Inadequate tissue delivery
Another consideration in adequately delivering antioxidants is

ensuring delivery to the tissue compartment where oxidative stress is
occurring. For example, replacing SOD1 intravenously, with a half-life

of only a few minutes is unlikely to effectively and adequately restore
SOD to the lung tissue [81,83]. In addition, SOD1, due to its negative
charge, does not bind to cell surfaces or penetrate tissue well, while
SOD3 or the chimeric protein SOD2/3, which are positively-charged,
bind to the cell surface and extracellular matrix which improves tissue
content and half-life, offering a potential advantage in certain disease
settings.

Inadequate timing of delivery
In addition to delivering a therapeutic antioxidant dose and

targeting a specific vulnerable tissue compartment, delivery of
antioxidant therapy during a therapeutic window is equally as
important. Mechanistically, antioxidants are more likely to be
beneficial if started earlier in the course, before the development of
irreversible tissue damage occurs.

Disruption of physiologic function of ROS/RNS
Although antioxidants provide benefit by mitigating damage caused

by oxidative stress, interference with the extensive physiologic roles of
ROS or RNS by antioxidants may be harmful.

ROS modulate both physiologic and pathophysiologic functions in
phagocytosis and immune defense. For example, in a mouse model of
systemic inflammatory response syndrome, NOX2 was found to be
protective against inflammation, lung injury and mortality [96], while
a mouse model of E. coli peritonitis showed increased morbidity and
mortality in mice supplemented with vitamin C, GSH and NAC [97].
In contrast, in a mouse model of influenza A pneumonia, NOX2
inhibition resulted in decreased viral titers, decreased airway
inflammation, and decreased production of ROS with decreased
mortality [98].

ROS/RNS also play a key role in cell growth, accounting for recent
evidence that antioxidant therapy can increase cancer risk in both
human and animal studies. In the Beta Carotene and Retinal Efficacy
Trial (CARET), men and women at high risk for lung cancer who
received beta-carotene and vitamin A had a higher incidence of lung
cancer versus those receiving placebo [99-102]. In a mouse model of
lung cancer, mice supplemented with NAC and vitamin E showed
increased tumor progression and decreased survival due to loss of
ROS-induced expression of the p53 tumor suppression gene [103].
These examples demonstrate potential detrimental effects on
important physiologic processes due to excess scavenging of ROS.

Lack of consideration of individual factors
The suggestion of potential harm with antioxidants in some patients

does not necessarily imply that antioxidant therapy in lung disease
should be abandoned, rather that we may need to implement a more
individualized approach to the use of antioxidants. Such an approach
will require knowledge of individual genetic variations in antioxidant
enzymes, epigenetic regulation, and potentially biomarker profiles that
identify specific patients vulnerable to oxidative stress and guide
patient-specific treatments.

Polymorphisms and genetic variations in numerous antioxidant
enzymes have been described. Many of these variations alter
antioxidant gene expression, antioxidant protein function or protein
distribution, and impact development and progression of respiratory
diseases. For example, in premature infants, certain variations in SOD
isoforms and catalase are protective against development of neonatal
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respiratory distress syndrome [104]. In COPD, polymorphisms in
antioxidant genes related to GSH function and all isoforms of SOD
alter susceptibility to COPD and impact disease progression [105-107].
Genetic variations in antioxidant enzymes have also been implicated in
susceptibility to asthma [108] and acute lung injury. Interestingly, a
particular polymorphism may have the opposite effect on risk,
depending on the disease state. For example, the polymorphisms in
SOD3, such as the R213G single nucleotide polymorphism, which
shifts the distribution of SOD3 from the tissue to the extracellular
fluids, decreases the risk for COPD while increasing the risk for
pulmonary vascular disease [109-111]. Knowledge of specific
polymorphisms and genetic variations would allow clinicians to target
particular vulnerable patients with patient specific antioxidant therapy,
rather than large populations with a particular disease. Though, the
feasibility of a large study using this more selective approach is
difficult, there are small studies that support the notion that those with
genetic susceptibility to oxidative stress are more likely to benefit from
targeted antioxidant therapy. This was demonstrated by a study of
ARDS in which NAC did not offer an overall mortality benefit,
however in selected patients with a single nucleotide polymorphism in
GSH S-transferase, NAC improved mortality [112].

New experimental approaches
There are numerous promising approaches currently under

investigation that are designed to more effectively restore NO●

bioactivity, block excess ROS/RNS production, scavenge ROS/RNS, or
address individual variations in antioxidant levels to improve
treatment for lung and pulmonary vascular diseases. Many of these
therapies are still being tested in the laboratory setting in relevant
animal models but will be the foundation for new drug development
and study design to treat infants, children and adults with a wide range
of lung diseases. This review aims to highlight these general concepts,
though is not able to cite the multitude of important investigations in
this field.

Augment NO bioactivity
New approaches to augment NO● bioactivity hold great promise in

the treatment of lung and vascular diseases [113]. These approaches
include agents that improve delivery or bioavailability of NO●, enhance
cGMP-dependent NO● signaling, or improve eNOS activity. One of the
concerns with NO● delivered as a gas is its high reactivity with O2 in
the gaseous phase and with O2

●- when in the liquid extracellular and
intracellular mileau. Delivery of NO● bioactivity through the use of S-
nitrosothiols allows for targeted delivery of this important bioactive
form of NO●. This has widely been done in the laboratory setting using
S-nitrosothiols like S-nitrosocysteine, while one potential therapeutic
agent is ethyl nitrite, a gas that largely functions as an S-NO donor
[55,114-116]. There is also significant interest in the therapeutic use of
nitrite to augment NO● bioactivity [117-119]. iNO increases formation
of nitrite, nitrate and S- nitrosthiols, while nitrite also is a precursor
promoting formation of S-nitrosothiols, which may explain its
beneficial effects [120,121]. In addition to new PDE5 inhibitors,
guanylate cyclase activators are also under investigation to prolong the
biologic activity of NO● [122-126]. Strategies that augment eNOS
function to generate NO● include supplementation of substrate or
essential co-factors, L-arginine, L-citrulline, or tetrahydrobiopterin
(BH(4)) [127-129]. The modulation of BH(4), an essential cofactor in
NOS coupling, has also been explored in which BH(4), BH(4) analogs
and sepiapterin supplementation was used to increase NO● production

and inhibit hypoxia-induced vasoconstriction [130], pulmonary
endothelial dysfunction [131,132], and restoring angiogenesis in
persistent pulmonary hypertension [133,134]. In addition, inhibition
of arginase is another strategy to enhance L-arginine availability for
eNOS [135].

Block ROS/RNS production
Other strategies to selectively block ROS/RNS production by

specific enzyme isoforms are being developed experimentally. NOX
inhibitors, such as NOX4 inhibitor, have been used to attenuate gene
transcripts involved in hypoxia-mediated vascular remodeling and
pulmonary fibrosis in rodents [136], and apocynin has been used to
inhibit activation of redox transcription factors NFκB and AP-1 and
production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in
experimental animal models of asthma airway inflammation [137].
Studies have also shown that inhibitors of xanthine oxidase, such as
allopurinol, reduce the production of nitrotyrosine in the airways of
COPD patients, although exhaled nitric oxide was increased [138].
Potentially a specific NOS2 inhibitor may have benefit in inflammatory
states associated with nitrosative states and prevent the issues observed
with the general NOS inhibitor described above in the Triumph trial.

Scavenge oxidants by increasing endogenous antioxidant
defenses

A new approach is the induction of endogenous catalytic
antioxidants, SOD and catalase, as an antioxidant therapy [139]. This
approach has been studied in healthy human subjects that were given a
composition of extracts from five medicinal plants (Protandim). Each
ingredient has been reported to increase SOD and catalase activity
while decreasing plasma TBARS, an indication of decreased lipid
peroxidation. The Protandim study evaluated the additive effects of the
five-ingredient composition, and showed that after 30 days of
supplementation TBARS was decreased by 40%, and after 120 days
erythrocyte SOD increased by 30% and catalase increased by 54%.
Protandim functioned by increasing endogenous Nrf2 antioxidant
defenses. Nuclear factor (erythroid-derived 2)-like 2, Nrf2, is a master
regulator of the human Antioxidant Response Element (ARE), serving
as a transcription factor for the genes of a number of antioxidant
enzymes. In normal conditions, Nrf2 resides in the cytoplasm bound
to Kelch like-ECH-associated protein 1 (Keap1) and Cullin3, and is
ultimately ubiquinated and degraded. As a stress response, cysteine
residues in Keap1 disrupted, causing Nrf2 to be released and
translocate into the nucleus to bind to ARE. When Nrf2 is activated,
antioxidant-related genes involved in several lung related diseases such
as lung inflammation, pulmonary fibrosis, pulmonary hypertension,
acute mountain sickness, and lung cancer are expressed. In addition to
Protandim, other approved therapeutic agents may also increase Nrf2
activation [140-143].

Targeted therapies
An increased understanding of the pathophysiology of lung diseases

related to oxidative stress has lead to the development of therapies that
have potential to be more effective and efficient by targeting specific
lung compartments and cell types. Administration of therapeutics by
inhalation for localized effects in the lung has long been a conventional
method. Related to direct lung delivery of antioxidants, both
aerosolized recombinant SOD3 and a novel SOD2/3 chimeric protein
delivered intratracheally in rodents showed protection from hyperoxia
or acute hypoxia [144,145]. Recent progress in the development of
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inhalable delivery systems include micro- and nanoparticles that show
increased, stable, or sustained release of encapsulated drug in the lung
[146-148], which provide the promise of applying these technologies to
antioxidant delivery to the lung [149]. Furthermore, advancements in
pharmaceutical biotechnology has allowed the development of other
lung targeted delivery systems [150] that can be administered
systemically, and novel antioxidant therapies with improved targeting
capacities in the lung. Antibody conjugated proteins and nanoparticles
that target ICAM-1 or PECAM-1 receptors on pulmonary
endothelium has been used to deliver NOX inhibitors, SOD and
catalase to protect against oxidative stress in the pulmonary
vasculature [151-154]. Other modern drug delivery strategies utilize
redox-responsive carriers to target and release drug within redox
microenvironments [155].

Harnessing Personalized Medicine
As discussed above, many studies of antioxidant therapies selected

patients broad groups of patients who were all vulnerable to oxidative
stress from lung disease, but it is plausible that a more personalized
and targeted approach to antioxidant therapy using known genetic
variations in antioxidants, known epigenetic changes and perhaps
particular biomarker profiles would better target patient-specific
therapies to improve outcomes. Knowledge of polymorphisms and
genetic variations that affect antioxidant expression, function, and
tissue distribution may allow targeted therapy to the appropriate
individuals to replete deficient antioxidants.

Another approach to better target antioxidant therapies is to utilize
available biomarker profiles to tailor specific therapy. There are
multiple measurable markers of both oxidative stress and antioxidant
enzyme activity. There is clearly no benefit in augmenting antioxidant
defenses if they are not deficient, and there may in fact be harm, as
discussed above. Although there are challenges with this approach,
knowledge of particular antioxidants or particular markers of oxidative
stress will likely prove to be clinically relevant and guide therapy. The
application of exhaled nitric oxide (eNO) measurements provides an
example of how this approach may be useful. Noninvasive
measurements of eNO reflect derangements in NO● and inflammation
[156]. In asthma, where eNO has been most well studied, elevations in
eNO correlate with degree of airway inflammation and bronchial
hyperreactivity, and helps guide use of asthma controller medications
[157]. In sickle cell disease, eNO inversely correlates with the degree of
severe airway obstruction and pulmonary hypertension [158], as well
as inflammatory pulmonary diseases including Cystic Fibrosis (CF)
and non-CF related bronchiectasis, bronchopulmonary dysplasia, and
bronchiolitis [159-161]. Other biomarkers of oxidative stress can be
assessed through exhaled breath condensates and this is an area of
active research that may guide other antioxidant therapies [161].

In conclusion, an imbalance between production of ROS/RNS and
scavenging capabilities through enzymatic and non-enzymatic
defenses is implicated in diverse lung and pulmonary vascular diseases.
The therapeutic approach to treat oxidative stress has encountered
major barriers that we propose are complicated by the inadequate
delivery of the proper antioxidant in the right concentration to the
appropriate tissue or cell compartment. It is now clear that since
ROS/RNS are critical biologic signaling molecules essential to cell
homeostasis and adaptation to stress, indiscriminant scavenging of
these molecules may decrease ROS levels but actually worsen the
disease process by disrupting normal cellular functions. Furthermore,
as personalized medicine evolves, it will be essential to consider

individual genetic or epigenetic factors impacting the oxidant/
antioxidant system to more appropriately guide therapy. Novel
therapeutic agents bring exciting opportunities to harness new
knowledge and utilize targeted and patient specific therapies in the
future to treat lung and pulmonary vascular diseases.
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