ISSN: 2153-0645
Journal of Pharmacogenomics & Pharmacoproteomics
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Peptides Identified Through Phage Display for Prostate Cancer Imaging and Therapy

Wei Wang1, Moze Tong1, Yanbin Zhang1 and Yongping Chen 1,2 *
1Department of Urology, the Second People’s Hospital of Hefei, Hefei 230011, Anhui, PR China
2Washington Biotechnology Inc, 6200 Seaforth Street, Baltimore, Maryland 21224, USA
Corresponding Author : Yongping Chen
W ashington Biotechnology Inc
6200 Seaforth Street, Baltimore
Maryland 21224, USA
Tel: +1 410-633-9210
Received: October 26, 2015; Accepted: October 27, 2015; Published: November 02, 2015
Citation: Wang W, Tong M, Zhang Y, Chen YP (2015) Peptides Identified Through Phage Display for Prostate Cancer Imaging and Therapy. J Pharmacogenomics Pharmacoproteomics 6:e150. doi:10.4172/2153-0645.1000e150
Copyright: © 2015 Wang W, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at Pubmed, Scholar Google

Visit for more related articles at Journal of Pharmacogenomics & Pharmacoproteomics


Prostate cancer is the second highest cause of cancer death among the world. It is important to identify the target molecules for prostate cancer early detection and targeted therapy. In this mini review, we discuss some of peptides identified through phage display for molecular imaging and targeted therapy of prostate cancer.

Prostate cancer; Peptides; Molecular imaging; Targeted therapy; Phage display
Cancer has become the second most common cause of the death following cardiovascular disease in the world [1]. A few millions people are diagnosed with cancer every year around worldwide, and many patients eventually die from it. For example, in the United States, approximately 1,600 people die from cancer every day. Among these, prostate cancer (PCA) is the most common cancer among men in the USA. The approximately 2 million cases and around 0.3 million prostate cancer related deaths occurred in the United States in 2013 [2]. So far, the prostate cancer is the second highest cause of cancer death among the world.
In the future, estimates of diagnosed prostate cancer cases are around 16.48% of men at some point during their lives [3]. There are tens of thousands of individuals who suffer the symptoms of aggressive prostatic cancer, which affects the quality of life of people even they may not die by cause of it. Although, the PSA (prostate specific antigen) test has been used initial diagnosis of disease or monitor the efficacy of therapy and for prognosis of outcomes [4]. Even a man has abnormal level of PSA in the blood, doctors still would often recommend a prostate biopsy to determine whether prostate cancer is present, but biopsy is an invasive method. Therefore, the development of non-invasive technologies with the goal to detect prostate cancer at early, monitor therapeutic effects and treatment outcomes, and guide interventions are urgent for such patients. Molecular imaging is considered as this novel method.
Molecular imaging is a type of medical imaging that provides detailed pictures of what is happening inside the body at molecular and cellular level. It would be used to identify prostate cancer in its earliest stages and detect the exact location of a tumour in prostate before symptoms occur. Molecular imaging combined with targeted therapy are two edged sword that may improve the efficiency of diagnosis, attenuate prostate cancer growth, reduce the side of chemotherapy and extend survival of prostate cancer patients. Whatever molecular imaging or targeted therapy of prostate cancer, they focus on molecular targets. So, identifying targets plays essential roles in designing new diagnosis or therapeutic agents. Phage display has opened the door to development of these agents in prostate cancer imaging or targeted therapy.
Phage display is a powerful tool in which a peptide or protein is genetically fused to a coat protein of a bacteriophage, resulting in display peptide or protein on the surface of phage particles [5,6]. Usually, this technique is used to study the interactions between protein-protein, protein-peptide, and protein-DNA [7]. Also, this technique is for selecting peptides, proteins, or antibodies with specific binding with receptors or particular molecules. Compared to antibody, identifying of peptide is more interesting to researchers because of their rapid blood clearance, tissue penetration, increased diffusion, non-immunogenic nature and easily synthesis. [8]. Different screening methods have allowed to identify the peptides binding to specific molecules in vitro, in living cancer cells, in animals or in human samples [9-11]. Recently, this technique is great interesting in cancer area to select specific peptides for targeting including prostate cancer. The focus here is centered to “targets” related to peptides identified through phage display binding to the receptor or antigen on the surface of the prostate cancer for prostate cancer molecular imaging and targeted therapy.
Phage display was widely used to identify peptides to develop new peptide-based probes for optical molecular imaging of prostate cancer. Near-infrared (NIR) optical imaging has increasingly interesting for disease detection, therapeutic effects monitoring, and interventions guiding due to minimal autofluorescence, low absorption and significant imaging depth in vivo [12-14]. With these advantages of NIR imaging, it is very useful to develop peptide-based molecular NIR probes for prostate cancer diagnosis. Toward this goal, Newton et al. [15] used in vivo phage display method to identify the peptide sequence IAGLATPGWSHWLAL to bind PC-3 human prostate carcinoma, and demonstrated the phage clone labeled with the NIR fluorophore AlexaFluor680 had a tumor-to-muscle ratio of ~30 in experiments. In addition, Kelly et al. [16] used phage display to isolate Hepsin (HPN: as a biomarker for detection of PCA) binding peptides with high affinity and specificity, and they developed HPN targeted NIR imaging agents, which binds HPN with high specificity within prostate cancer in vivo. Compared to NIR imaging, Magnetic resonance imaging (MRI) has the advantages of having very high spatial resolution and is very adept at morphological imaging [17].
The peptide targeted contrast agents are promising for highresolution molecular MRI of prostate cancer. Wu et al. synthesized and evaluated a small molecular targeted contrast agent using a pentapeptide CREKA as a target molecule named CREKA-dL-(Gd- DOTA)4 with improved physico-chemical and pharmaceutical properties for molecular MRI imaging of prostate cancer [18]. Recently, Ghosh et al. engineered a phage-displayed peptide that targets SPARC glycoprotein, which is highly expressed in prostate cancer to M13 surface with assembly of monodisperse iron oxide magnetic nanoparticles and demonstrated that M13-templated magnetic nanoparticles were used for targeted in vivo imaging of prostate cancer [19]. Besides these imaging methods, many investigations have been conducted using diagnostic radiotracer specific for prostate cancer imaging. Based on phage–displayed peptide contrast agents, Faintuch et al. compared two peptide radiotracers for prostate carcinoma targeting and imaging and demonstrated that peptide radiotracers are promising for prostate cancer imaging [20].
After we mentioned the strategy of molecular imaging for prostate cancer based on phage displayed peptide, we will briefly discuss the targeted therapy of prostate cancer using peptide identified through phage display as target molecules. Two peptides, PKRGFQD and SNTRVAP were identified through phage display by Mandelin et al. [21] targeting a model of castrate-resistant osteogenic prostate cancer in vivo , which should be considered for targeted drug development for therapy of human metastatic androgen-independent prostate cancer. Also, Shen et al, identified peptides as ligands for Prostate-specific Membrane Antigen (PSMA) and evaluated the binding of prostate cancer. These peptide sequences might as the target for prostate cancer tumor imaging and therapy [22]. Recently, DePorter et al, engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells which would be used to deliver payload for therapy of prostate cancer [23].
In this editorial, we summarized some examples where peptides were identified through phage display to engineer contrast agents for prostate cancer imaging or targeted therapy of prostate cancer. We hope readers realize identification of the binding peptides isolated from phage display is of high importance and open a new view for readers.

Select your language of interest to view the total content in your interested language
Share This Article
Relevant Topics
Disc Applications of Bioinformatics
Disc Bioactive Compound
Disc Bioinformatics Algorithms
Disc Bioinformatics Databases
Disc Bioinformatics Tools
Disc Cancer Pharmacogenomics
Disc Cancer Proteomics
Disc Cellular Medicine
Disc Clinical Pharmacogenomics
Disc Clinical Proteomics
Disc Cluster analysis
Disc Comparative genomics
Disc Comparative proteomics
Disc Computational drug design
Disc Current Proteomics
Disc Data algorithms
Disc Data mining applications in genomics
Disc Data mining applications in proteomics
Disc Data mining in drug discovery
Disc Data mining tools
Disc Data modelling and intellegence
Disc Data warehousing
Disc Drug Dosage Formulations
Disc Drug Toxicity and Efficacy
Disc Epigenomic studies
Disc Epigenomics
Disc Gene Therapy
Disc Gene polymorphism
Disc Genetic Engineering in Medicine
Disc Genome annotation
Disc Genomic Medicine
Disc Genomic Targets
Disc Genomic data mining
Disc Genomic data warehousing
Disc Human Molecular Genetics
Disc Human Proteome Project Applications
Disc Immune Disorders
Disc Individualized Medicine
Disc Mapping of genomes
Disc Mass Spectrometry in Proteomics
Disc Medicinal Biotechnology
Disc Meta genomics
Disc Metabolomics
Disc Microarray Proteomics
Disc Molecular Basis of Cancer
Disc Molecular Basis of Obesity
Disc Molecular Diagnosis
Disc Molecular Genetic Test
Disc Molecular Medicine
Disc Molecular and Cellular Proteomics
Disc Nuclear Medicine
Disc Pathology and Molecular Medicine
Disc Personalized Medicine
Disc Personalized Medicine Studies
Disc Pharmacoeconomics in Drug Development
Disc Pharmacogenetics
Disc Pharmacogenomic Biomarker
Disc Pharmacogenomics Applications
Disc Pharmacogenomics Future Medicine
Disc Pharmacogenomics and Personalized Medicine
Disc Pharmacogenomics for Patient Care
Disc Pharmacoproteomics in Drug development
Disc Protein Sequence Analysis
Disc Proteogenomics
Disc Proteome Profiling
Disc Proteomic Analysis
Disc Proteomic Biomarkers
Disc Proteomics Clinical Applications
Disc Proteomics Research
Disc Proteomics Science
Disc Proteomics and Pharmacodynamics
Disc Proteomics data warehousing
Disc Python for Bioinformatics
Disc Quantitative Proteomics
Disc Statistical data mining
Disc Translational Medicine
Recommended Journals
Disc Molecular Medicine Journal
Disc Data Mining Journal
Disc Proteomics Journal
  View More»
Recommended Conferences
Disc 5th Pharmacists Annual Meeting
July 14-16, 2016 Brisbane, Australia
Disc 6th Pharmacovigilance Congress
Aug 1-3, 2016 Toranto, Canada
Disc 4th Genomics & Pharmacogenomics Conference
Sept 12-14, 2016 Berlin Germany
Article Tools
Disc Export citation
Disc Share/Blog this article
Article usage
  Total views: 11244
  [From(publication date):
November-2015 - Jun 29, 2016]
  Breakdown by view type
  HTML page views : 7510
  PDF downloads :3734

Post your comment

captcha   Reload  Can't read the image? click here to refresh

OMICS International Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
OMICS International Conferences 2016-17
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2016 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version