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Introduction
The advances in computational and biological techniques of 

protein studies have provided enormous online databases. However, 
the complexity of protein structure requires adequate bioinformatics 
methods to mine these databases.

The principles of graph theory have been adopted to investigate 
organic molecules [1] and proteins [2-4]. The tertiary structure captures 
homology between proteins that are distantly related in evolution. With 
the availability of more protein 3D-structures due to techniques such as 
X-ray crystallography, increasing efforts have been devoted to directly
deal with them. A crucial step in the computational study of protein
structures is to look for a convenient representation of their spatial
conformations. A possible representation of protein 3D-structure
can be a graph of interconnected amino acids. Figure 1 shows an
example of a signaling protein and its corresponding graph. The graph
representation preserves the overall structure and its components.
Such representation can be considered as an alternative to existent
representations, such as the PDB format [5]. It allows fully exploiting
the potential of data mining and graph theory algorithms to perform
complex studies such as the discovery of important substructures in
protein families which can be performed through frequent subgraph
mining, pattern recognition, and functional motif discovery. Figure 2
shows two subgraphs corresponding to two recurrent substructures
in a dataset of 38 proteins from the immunoglobin C1-set domains
family, and their corresponding mapping on the original 3D-structure
of the HFE (human) hemochromatosis protein. Such substructures are 
relevant for protein classification, protein function prediction, protein
folding, etc. For instance, we have previously explored the potential of
graph representation in the classification of four protein 3D-structure
datasets, including G-proteins, immunoglobin C1-set domains, C-type 
lectin domains, and protein kinases catalytic subunit [4]. Frequent
subgraphs were mined and used as features for the classification
of each dataset. The experimental results showed that this graph-
based approach outperformed the most competitive bioinformatics
approaches including structural alignment-based classification (using
Dali [6]) and Blast-based classification [7].

In this paper, we present Protein Graph Repository (PGR), an 
online repository of graphs representing all protein 3D-structures of 
the Protein Data Bank (PDB) [5]. PGR provides bioinformatics tools 
that facilitate the integration of graph theory techniques in the core of 
protein 3D-structure studies [4,8,9].

PGR Contents
Graph transformation of protein 3D structure

To transform protein 3D structures into graphs, it is straightforward 
to consider the relevant chemical interactions of the proteins. Chemical 
interactions are the electrostatic forces that hold atoms and residues 
together, stabilizing proteins and forming molecules that give them 
their 3 dimensional shape [3,8,10,11]. These interactions are mainly:

Covalent bonds between two atoms sharing a pair of valence 
electrons.

Ionic bonds between oppositely charged components.

Hydrogen bonds between two partially negative charged atoms 
sharing partially positive charged hydrogen.

Hydrophobic interactions where hydrophobic amino acids in the 
protein closely link their side chains together.

Van der Waals forces that represent transient and weak electrical 
attraction of one atom for another when electrons are fluctuating.

Existing transformation approaches of protein 3D-structure 
into graph, similarly consider amino acids as graph nodes, but they 
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Abstract
Graph theory and graph mining constitute rich fields of computational techniques to study the structures, topologies 

and properties of graphs. These techniques constitute a good asset in bioinformatics if there exist efficient methods for 
transforming biological data into graphs. In this paper, we present Protein Graph Repository (PGR), a novel database 
of protein 3D-structures transformed into graphs allowing the use of the large repertoire of graph theory techniques in 
protein mining. This repository contains graph representations of all currently known protein 3D-structures described 
in the Protein Data Bank (PDB). PGR also provides an efficient online converter of protein 3Dstructures into graphs, 
biological and graph-based description, pre-computed protein graph attributes and statistics, visualization of each 
protein graph, as well as graph-based protein similarity search tool. Such repository presents an enrichment of existing 
online databases that will help bridging the gap between graph mining and protein structure analysis. PGR data and 
features are unique and not included in any other protein database. The repository is available at http://wjdi.bioinfo.
uqam.ca/ 
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differ in considering the edges in attempt to reflect the truly existing 
interactions. In the following, we present the main approaches in the 
literature that are used for building protein graphs in PGR. Let G be a 
graph, u and v two nodes of G (u, v ∈ G), ∆ a function that computes 
the distance between pairs of nodes ∆(u, v), and δ a distance threshold.

Main atom: Abstracts each amino acid in only one main atom, MA 
[3, 10]. Two nodes representing two amino acids u and v are linked by 
an edge e (u, v) if the Euclidean distance between their two main atoms 
∆(MA(u), MA(v)) is below a distance threshold δ. The main atom used 
in the literature is Cα with usually δ ≥ 7Å on the argument that Cα atoms 
define the overall shape of the protein conformation [3].

All atoms: Considers the distances between all pairs of atoms 
∆(AA(u), AA(v)), where AA(u) represents all atoms of u (AA(u) = ∀atom 
∈ u) [11]. Two nodes representing two amino acids u and v are linked 
by an edge e(u, v) if the Euclidean distance between any pair of atoms 
from both amino acids ∆(AA(u), AA(v)) is below a distance threshold 
δ. Although this increases the complexity of graph building, it allows 
detecting connections that were omitted using Main Atom [11].

Both Main Atom and All Atoms suffer drawbacks. Since, the Main 
Atom technique abstracts amino acids into one main atom, it may 
omit possible edges between other atoms in the amino acids that are 
closer than their main atoms. Moreover, in the case of considering 
centroids of the amino acids as the main atoms, it may also suffer from 
two problems. In the case of two big amino acids, if their centroids 
are farther than the given distance threshold, they will be considered 
with no links while a real connection could be established between 
other close atoms (other than the centroids). In the case of small amino 
acids, if the distance between their centroids is smaller than the given 
distance threshold then they will be considered as connected while they 

can be disconnected in reality. The all Atoms technique overcomes 
both limitations by theoretically considering the distance between all 
the atoms in the amino acids, this highly increases the runtime and 
complexity of the technique. However, the authors proposed some 
heuristics to alleviate the complexity. For instance, they consider only 
the distance between the side chains’ centroids to decide whether their 
amino acids are connected or not, without regards to their chemical 
properties. This reduces the runtime but it may engender false edges.

Main features of PGR

PGR can be divided in three main entries associated to the Protein 
conversion to graph, a comprehensive and complete databank of 
known protein structures and graph mining tools (Figure 3). 

Graph repository: Here, we transformed all protein 3D-structures 
(of the PDB) into protein graphs (in PGR) using the described methods. 
The repository is enriched by a selection tool allowing the filtering and 
targeting of a specific population of proteins. Each protein graph can be 
displayed solely in a light-weight and interactive visualization interface 
using the best available visualization libraries including D3.js [12] 
and Cytoscape [13]. A set of the most important attributes for protein 
graph mining have been pre-computed including density, diameter, 
link impurity, etc. These attributes are presented with their Z-score 
according to all protein graph attribute distributions. So far, the 
repository contains 188 252 graphs corresponding to 94 126 protein 
3D-structures from the PDB. The 188 252 protein graphs are composed 
of 94 126 graphs created using Main Atom method with Cα and 94 126 
graphs created using All Atoms method. PGR data will be regularly 
updated according to the PDB.

PG-converter: PGR also provides an online converter that allows 
to upload and transform protein 3D-structures into protein-graphs. 
Available transformation methods include All Atoms, Main Atom 
based on Cα, Cβ, amino acid centroid, side chain centroid, amino acid 
ray, amino acid ray and side chain orientation, or side chain ray.

PG-similarity: We provide a search tool based on the pairwise 
similarity of structural protein attributes. Such tool could constitute 
an asset for several biological tasks such as protein classification and 
function prediction. The pairwise similarity between two protein 
graphs is measured by the distance between their corresponding vector 
representation based on the structural and topological attributes. 
We selected a set of attributes from the literature that are efficient 
in describing connected graphs [14,15]. Let G = (V, E) be a graph 
representation of protein 3D structure. G is given as a collection of 
nodes V and a collection of edges E. We denote by |V | the number of 
nodes (also called the graph order) and by |E| the number of edges (also 
called the graph size). In the following, we list and define the set of used 
structural and topological attributes:

Average degree: The degree of a node u, denoted deg(u), represents 

Figure 1: A signaling protein 3D-structure (Crystal structure of universal 
stress protein MSMEG 3811 in complex with cAMP, PDB-id: 5AHW) and its 
corresponding graph.

Figure 2: Two subgraphs corresponding to recurrent substructures extracted 
from a dataset of 38 proteins (including the HFE(human) hemochromatosis 
protein) of the immunoglobin C1-set domains family. All the 38 proteins were 
transformed into graphs using PG-converter, then a frequent subgraph discovery 
was performed to discover the recurrent substructures with a minimum support 
threshold of 30%. This figure highlights the mapping of both subgraphs on the 
original 3D-structure of the HFE(human) hemochromatosis protein.

Figure 3: PGR main bioinformatics features.
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the number of nodes adjacent to u. The average degree of a graph 
G is the average value of the degrees of all nodes in G. Formally:  

( ) ( )1
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= ∑  where deg(ui) is the degree of the node ui and n is 
the number of nodes in G.

Density: The density of a graph G = (V, E) measures how many 
edges are in E compared to the maximum possible number of edges 
between the nodes in V. Formally: ( ) ( )
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Average clustering coefficient: The clustering coefficient of a node 
u, denoted by c(u), measures how complete the neighborhood of u is, 

i.e., ( ) ( )
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  where ku is the number of neighbors of u and eu is 

the number of connected pairs of neighbors. If all the neighbor nodes 
of u are connected, then the neighborhood of u is complete and we have 
a clustering coefficient of 1. If no nodes in the neighborhood of u are 
connected, then the clustering coefficient is 0. The average clustering 
coefficient of an entire graph G having n nodes, is given as the average 
value over all the nodes in G. Formally: ( ) ( )1
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Average effective eccentricity: For a node u, the effective 

eccentricity represents the maximum length of the shortest paths 
between u and every other node v in G, i.e., e(u) = max{d(u, v) : v ∈ V }. 
If u is isolated then e(u) = 0. The average effective eccentricity is defined 
as ( ) ( ){ }
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∑ , where n is the number of nodes of G.

Effective diameter: The effective diameter represents the 
maximum value of effective eccentricity over all nodes in the graph 
G, i.e., diam(G)=max{e(u)|u∈V } where e(u) represents the effective 
eccentricity of u as defined above.

Effective radius: The effective radius represents the minimum 
value of effective eccentricity over all nodes in the graph G, i.e., 
rad(G)=min{e(u)|u∈V } where e(u) is the effective eccentricity of u.

Closeness centrality: The closeness centrality measures how fast 
information spreads from a given node to other reachable nodes in the 
graph. For a node u, it represents the reciprocal of the average shortest 
path length between u and every other reachable node in the graph, i.e., 
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∑  where d(u, v) is the length of the shortest path between 

the nodes u and v. For a graph G, we consider the average value of 
closeness centrality of all the nodes, i.e . ( ) 1
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Percentage of central nodes: Here, we compute the ratio of the 
number of central nodes from the number of nodes in the graph. A 
node u is considered as central point if the value of its eccentricity is 
equal to the effective radius of the graph, i.e., e(u) = rad(G).

Percentage of end points: It represents the ratio of the number of 
end points from the total number of nodes of the graph. A node u is 
considered as end point if deg(u) = 1.

Neighborhood impurity: The impurity degree of a node u 
belonging to a graph G, having a label L(u) and a neighborhood 
(adjacent nodes) N(u), is defined as ImpurityDeg(u) = |L(v): v ∈ N(u), 
L(u) ≠ L(v)|. The neighborhood impurity of a graph G represents the 
average impurity degree over all nodes with positive impurity.

Link impurity: An edge {u, v} is considered to be impure if L(u) 
≠ L(v). The link impurity of a graph G with k edges is defined as:
{ } ( ) ( ), :u v E L u L v

k
∈ ≠ .

Label entropy: It measures the uncertainty of labels. The 
label entropy of a graph G having k labels is measured as

( ) ( ) ( )logi iE G p l p l= −∑ , where 
il is the thi  label.

Compared to the conventional distance matrix representation [6] 
PG-similarity measures the global structural and topological similarity 
between protein structures on a macro side, whereas distance matrix 
based similarity operates on a micro side and looks into every single 
detail in compared structures. Even though both similarity methods 
should be highly correlated and not diverge (as similar structures have 
similar topological descriptions), each method has its positive and 
negative sides. Distance matrix based methods has the advantage of 
detecting exact superposition and local matching sites, however, they are 
combinatorial and thus computationally greedy. PG-similarity method 
is based on a vector embedding of graphs of protein structures based 
on a set of structural and topological attributes. This makes it unable to 
return local matches, however, such strategy makes it able to capture 
structural similarity in a very fast way. Moreover, some attributes, like 
clustering coefficient and neighborhood impurity, makes PG-similarity 
able to reveal hidden similarities that are undetected using existing 
methods.

Conclusion
With the growth of protein 3D-structures in online databases, the 

transformation of protein 3D-structures into graphs of interconnected 
amino acids and the application of graph mining concepts constitute 
a relevant feature for the development of rapid and efficient 
computational techniques. In this paper, we introduced Protein 
Graph Repository (PGR), a novel database of protein 3D-structures 
transformed into graphs allowing the use of the large repertoire of 
graph theory techniques in protein mining. PGR provides three 
main features that are unique and not included in any other online 
protein database, namely the graph repository, PG-converter and PG-
similarity. The graph repository contains graph representations of all 
currently known protein 3D-structures described in the PDB. Each 
graph representation is enriched by graph based description and light 
weight interactive visualization. PG-converter provides an efficient 
online converter of protein 3D structures into graphs. PG-similarity 
offers a pairwise similarity search tool based on a set of informative 
structural and topological attributes. Such tool could constitute an asset 
for several biological tasks such as protein classification and function 
prediction. PGR is an independent repository, but it can also act as a 
complementary resource to existing ones such as the PDB. PGR is apt 
for extension and additional services and functionalities will be added 
in the next coming versions.
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