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Introduction
Analysis of the tri-dimensional (3D) protein structures is often 

based on its simplification into secondary structures, including the 
well-known repetitive and regular regions: α-helix and β-strand, which 
respectively represent about 30 and 20% of protein residues. The 
remaining residues constitute a category called loop, often considered 
as strongly variable. Although the prediction of secondary structure 
types can be achieved with a success rate of 80%, the description of the 
secondary structure of a protein does not provide an accurate enough 
characterization to allow characterization of the complete structure of 
proteins [1].

To avoid this limitation, sereval studies [2–10] have focused on the 
identification of a detailed and systematic decomposition of protein 
structures into a finite set of generic protein fragments. These libraries 
provide an accurate approximation of protein conformation. They are 
used to classify protein structures [11], to identify structural changes 
across proteins in the same SCOP class [12], to find compatible folds for 
amino acid sequences [13] and to analyze the functional local motions 
during molecular dynamics [14]. However, the majority of these 
libraries do not consider the rules that govern the assembly process of 
the local fragments to produce a protein structure. To take into account 
these rules, Camproux et al.[9] established a library of fragments based 
on the Hidden Markov Model approach, called HMM-SA (Hidden 
Markov Model - Structural Alphabet). It is a collection of 27 structural 
prototypes of four residues, labeled by {A-Z, a} and named structural 
letters (SLs). It permits the simplification of all 3D protein structures 
into one-dimensional (1D) sequences of SLs. HMM-SA is an effective 
and relevant tool for the study of protein structures [15], protein 
contacts [16], protein deformations [17], to search for 3D similarity 
across proteins [18] and to predict the conformation of peptides in 
aqueous solutions from their amino acid (AA) sequences  [19, 20].

HMM-SA particularly provides an accurate description of protein 
loop structures through 18 specific structural letters. Based on this 
observation, we developed the notion of SL word to rapidly extract 
structural motifs from protein loops [15]. SL words correspond to four 
successive SLs, extracted from SL-sequences corresponding to loop 
structures. It has been shown that recurrent SL words correspond to 

clusters of seven-residue fragments with similar structures and AA 
preferences: these words are named structural words [21]. This method 
does not require pairwise comparisons of fragments and allows to show 
that protein loops contain repetitive and regular regions.

Recently, the link between structural words extracted from 
protein loops [21] and protein functions has been studied. In this 
study, we supposed that a structural word specific to a protein family 
is likely to ac-count for a structural motif important to the family 
function. We started from a set of protein structures encoded into 
HMM-SA and grouped according the SCOP superfamily ID [22]. To 
quantify the specificity of a structural word to protein families, we 
computed the over-representation of each structural word in SCOP 
superfamilies using SPatt [23]. This allowed us to distinguish two types 
of over-represented structural words within loops according to their 
importance either for structure or for protein function. Thus, this 
method allows extracting some functional motifs without pairwise 
comparisons of fragments [24].

Coupling our previous works, we have recently developed a web 
server, named SA-Mot (Structural Alpha-bet - Motif, http://sa-mot.
mti.univ-paris-diderot.fr) [25]. This webserver allows the analysis of 
protein loop structures by extracting structural motifs important for 
both structure and function of protein.

However, it could be really interesting to be able to predict the 
presence of such identified functional structural motifs directly from the 
AA sequence. This work focuses on the prediction of a given structural 
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Abstract
The prediction of particular structural motifs associated to biological functions or to structure is of utmost importance. 

Given the increasing availability of primary sequences without any structure information, predictions from amino-acid 
(AA) sequences are essential. The proposed prediction method of structural motifs is a two-step approach based on a 
structural alphabet. This alphabet allows encoding any 3D structure into a 1D sequence of structural letters (SL). First, 
basic correspondence rules between AA and SL are learnt through genetic programming. Then, a Hidden Markov Model 
is learnt for each beforehand identified motif of interest. Finally, a probability to correspond to a given 3D motif for any 
given amino-acid sequence is provided. The method is applied on ATP binding sites to compare the efficiency of our 
method to other ones for a classical function. Then, the method ability to learn motifs corresponding to more rarely 
predicted functions or to other types of motifs is illustrated.
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word of interest directly from AA sequence. Our prediction method 
is divided into two steps: first, each four AA sequence is assigned a 
profile of potential SLs thanks to Boolean trees aiming at extracting 
sequence information. Then, to take into account the successive SL 
dependencies, the prediction of words of successive SLs is assembled 
through a Hidden Markov Model (HMM). This step aims at computing 
a score for the probability of finding a given structural motif behind the 
considered sequence. To illustrate the efficiency of the method concept, 
it is first applied to the prediction of a structural word located in ATP- 
binding sites. Then, two other examples of applications are given.

Methods
The datasets

In the learning stage, we used 7,656 different proteins from the 
Protein Data Base (PDB, www.pdb.org, [26]) with at most 25% of 
sequence identity. 92,832 loops were extracted from these proteins. 
These data were used to learn the parameter values of the prediction 
method described in Prediction method Section. In the validation 
stage, 6213 proteins were extracted from the PDB in the same sequence 
identity conditions and after removal of common proteins. They were 
splitted into 66508 different loops. The results in Result Section were 
obtained on the latter dataset.

Data encoding through HMM-SA

HMM-SA [9] aims at discretizing the conformational space of 
four-residue fragments into 27 structural states called SLs. It is based 
on a HMM allowing taking into consideration dependencies between 
successive letters. Indeed, some transitions between certain SLs are 
favored, so it can be really informative in a prediction objective to 
take into account such dependencies. Four SLs particularly describe 
conformation of α-helices (namely A, A, V and W), five SLs describe 
β-sheets (L, M, N, T and X) and the remaining 18 letters characterize 
loops.

From this alphabet, it is possible to encode any 3D structure into a 
1D string of SLs. In this goal, Viterbi or forward/backward algorithms 
[27,28] can be used to find the most probable sequence of SLs according 
to a given structure. In the following sections, focus will be put on four 
SL words, as illustrated in Figure 1.

From now on, the goal is to be able to model the link between AAs 
and SLs. Indeed, it is impossible to find a perfect application from 
the set of four AA sequences (204 ≈ 1.6 × 105 possibilities) onto the 
27 possible SLs. Indeed, the same AA sequence can be encoded into 
different SLs (due to flexibility) and the same SL can be obtained from 
different four-AA sequences.

Motif extraction method

The identification of motifs of interest, we will focus on in this 
paper, is presented in [24]. After 3D structure encoding into SLs, 
this method focuses on four SL-words corresponding to structural 
motifs consisting of seven-residue fragments sharing similar geometry 
and AA specificities [21]. This length has been chosen to obtain 
satisfying representativities [29]. Thus, thanks to HMM-SA, extraction 
of structural motifs from protein structures is translated into the 
extraction of four-SL words from the SL sequences.

It has been shown that some of these motifs are important for 
the protein structure, and other are implied in binding sites of small 
ligands (ATP/GTP, calcium, NAD(P)) [24].

Prediction method

First step: from four amino acids to one structural letter

The goal of the first step is to build classifiers characterizing AA 
sequences and allowing distinguishing between the different SLs. A 
usual one-versus-one classification process is used. In this way, each 
classifier deals with a simpler problem. Hence, a classifier will be built 
to compare each pair of SLs leading to optimize 351 classifiers.

Structure of a classifier allowing the discrimination of two SLs In 
order to find robust information about the relationship between AA 
sequence and SLs and to avoid any kind of over fitting, a very simple 
use of information is proposed. The proposed classifier can be seen like 
a tree. Figure 2 gives an example. Contrary to classical decision trees, 
this tree has to be read from leaves to root: by sequentially answering 
to each leaf question (there is or there is no such letter at such position) 
and combining the answers through the AND/OR operators contained 
in nodes, a global YES/NO answer is obtained allowing to affect the AA 
sequence to one out of the two SLs compared through this classifier. A 
jury of 351 classifiers is finally obtained providing 351 votes. Hence, a 
kind of profile in SLs is obtained for a four-residue fragment.

Scoring a classifier allowing the discrimination of two SLs To 
optimize each classifier, we define a fitness value, which quantifies its 
quality. It consists in three parts: entropy gain (related to discrimination 
ability), tree complexity and representativeness of the obtained decision 
rule.

Figure 1: Illustration of the way of fragment corresponding to seven AA (AA1, . 
. . ,AA7) is encodedinto a four SL word (SL1, SL2, SL3, SL4).

Figure 2: Example of classifier used to discriminate between two letters A and 
B: if there is G insecond position AND no P in fourth position OR a G in fourth 
position then the sequence is affected to A else to B.
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discriminate through their sequence than other ones. For example, SLs 
B and M are very well discriminated: one out of the two subgroups 
obtained after applying the classifier contains 3.2% of the B SLs and 
98.0% of the M. On the other hand, SLs a and M are particularly 
difficult to distinguish through their sequence.

In fact, partly due to flexibility, it is impossible to build a perfect 
bijection between those two kinds of objects. That is why structure 
prediction from sequence is such a difficult task. However, this first 
step allows to limit the possibilities by giving probabilities to each SL 
given four AAs.

Then, in the second step, the trick of our method is not to claim 
to be able to predict the best four SLs encoding for seven given AAs 
but, on the contrary, to verify how compatible the seven AAs are 
with a given target four SLs pattern. This considerably simplifies the 
question while allowing to predict different patterns. In addition to this 
viewpoint change, the second step takes advantage of another kind of 
information: the structural dependencies between successive SLs.

Second step: Looking for one specific structural word

The aim of this step is to decide, given the combined results of the 
first step for four consecutive (and overlapping) SLs and through a 
scoring function, if the conformation adopted by the considered seven 
residue fragment is likely to be encoded by a given four SL word of 
interest.

Structural word modelling and application to prediction : 
A dependency exists between successive SLs, especially because of 
overlaps. Hence, a HMM has been chosen to model the link between 
first step outputs and a given structural word. It is described in 
Figure 3. In this model, hidden states are the true SLs while observed 
states are outputs of step 1 for the corresponding sequence. 
Arrows between Xi and Xi+1 symbolize the dependency between 
successive letters called transition probabilities in HMM context 
and arrows between Xi and Oi represent the link between true 
SLs and step 1 outputs, namely the output probabilities.

Then, we compute the probability of the four true SLs being 
the target functional pattern given the step

1 outputs for four successive four AA fragments.

1:4 1:4 1 2 3 4 1, 2 3 4( ) ( , , , , , )P X O P X X X X O O O O=                        (1)

According to the chosen model,
4
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= Π

Entropy term: The global entropy (we refer to Shannon entropy 
[30]) associated with a sample containing the observations of two SLs 

i  and 2( ( , ) {1,2,..., 27} )j i j and i j≠ ∈  can be defined as:
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where ( )k
ijp

 is the proportion of SL ( { , }k k i j∈  in the sample 
containing all the observations of SLs i

and j 2( ( , ) {1,2,..., 27} )j i j and i j≠ ∈  and no other SL. The 
corresponding entropy gain can be defined as follows:
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where ( )
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k
ij lp  

is the proportion of the SL k in the l-th ( {1, 2}l∈  
subsample of the sample containing all the observations of SLs i and 

j provided by this classifier, ( {1,2})k kπ ∈  is the proportion of SLs 
contained in subsample k. Thus, the entropy gain is the difference 
between the global entropy and the weighted sum of entropies of the 
two subsamples.

Parsimony term: Penalizing the tree complexity is a way 
to avoid overfitting. The number of leaves of a tree, denoted nbf 
, is chosen as a quantification of its complexity. To normalize 
the variations of the complexity term in the fitness function, the 
following term is used:

1

1 2
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where D is the maximum authorized depth of any tree.

Representativity term: If the classifier makes a relatively small 
subsample but containing a majority of only one SL, its entropy 
will be satisfying whereas it is not representative of either of the 
two SLs. This kind of behaviour will be penalized by the following 
term:

,1 ,1
2 ( , )

i j
ij ij
i j
ij ij

p p
penal i j

p p
= −

The higher this term, the better the classifier.

Global criterion: Finally, the global fitness function can be 
expressed as follows:

1 2( , ) ( , ) ( ( , ))fit i j G i j penal penal i jα= + +

where α allows to balance entropy gain term and penalizations. 
In our applications, we experimentally chose α=0.05. It is chosen 
as the quantification of how much entropy gain we are ready to 
lose to be able to delete one leaf in the tree.

Optimization of each classifier: The kind of chosen classifier leads 
to use genetic programming (GP, [31,32]). Indeed, the cardinality of 
the set of all possible trees is huge. Hence, a heuristic method has to 
be used.

GP is a symbolic approach to computer programs induction. It is a 
kind of genetic algorithm [33] where potential solutions are programs 
defined on a landscape determined by the objective task. In our 
context, a program will be a classifier. The GP will allow the evolution 
of a population of potential classifiers through the use of mutation and 
cross-over operators.

In the choice between two SLs, some of them are easier to 

Figure 3: Structure of the HMM used to model the relationship between first 
step outputs and true SLs for a seven residue fragment: (X1,X2,X3,X4) are 
the true SLs and Oi = (o1

i , o
2

i , . . . , oi
351) is the vector of votes obtained from 

step 1 for the four AA fragment encoded by Xi.
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Now, P (Xi |Oi ) has to be computed. Assuming that the 
results of different trees are independent,

( ) ( )
( )

( ) ( ) ( ) ( )

j
i i ij

i i j j
i i i i i i

P o X P X
P X o

P o X P X P o X P X
=

+                                  (2)

This assumption is wrong for some comparisons (especially 
comparisons implying a common SL which is well predicted) but 
most of pairs of comparisons can be considered as independent 
(results not shown). Then, by Bayes theorem,

351
1 2 351

1

( ) ( , ,......., )i i i i i i
j

P X O P X o o o
=

= =∏

Finally, ( )iP X ,
1( )ii

P X X −
 and 1( )ii

P X X − are estimated on the dataset.
The two-step proposed method is summed-up in Figure 4.

 Evaluation criteria

In order to evaluate the method efficiency for a given structural 
word, several criteria can be used. In our context, two classes are 
defined: the fragments corresponding to the considered structural motif 
and the fragments that do not. Then, according to the final decision 
made, four cases can be defined: True Positives (denoted TP) occurring 
when a fragment really encoded into the considered structural word 
is predicted as corresponding to this word. In the same way, we have 
False Negatives (FN), False Positives (FP) and True Negatives (TN). 
Then, sensitivity (Se) and specificity (Sp) can be defined as follows:

TP TPSe and Sp
TP FN TN FP

= =
+ +

A threshold has to be chosen to decide whether or not a given 
structural word corresponds to the consid- ered structural word. Hence, 
the values of Se and Sp obviously depend on this chosen threshold. 
More specifically, increasing the threshold will result in improving 
Sp but decreasing Se. To simultaneously study, Se and Sp, a ROC 
(Receiver Operating Characteristic, [34]) curve can be built. It consists 
in plotting the Se according to (1−Sp) values for many threshold values. 
It is possible to measure the quality of a classifier by the Area Under the 
Curve (AUC): it will be 1 for perfect classifier and 0.5 for random ones. 
Then, the closer to 1 an AUC, the better the corresponding classifier.

Results
We have previously developed a method allowing the prediction 

of seven-AA structural motifs of interest from protein structures based 

on the 4 SL-words and the structural alphabet HMM-SA [21,24]. 
However this method is not applicable when the protein structure is 
not known. To avoid this problem, we propose a new method allowing 
the prediction of the structural motifs directly from the AA sequences.

In the following, the new prediction method concept is tested on 
three different structural motifs of interest previously identified by 
structural word approach [24] . The first one will be the most detailed. 
It concerns the structural word YUOD located in ATP-binding sites 
and allows the prediction of one kind of NP bind sites. This kind of 
site is quite commonly predicted and will allow to illustrate firstly 
the overlap between the structural motifs and functional annotations 
and secondly the comparison with two other prediction methods: 
SitePredict [35] and PROSITE [36]. The second example concerns a 
functional structural word RUDO located in the SAM/SAH-binding 
sites. Finally, in order to show the generality of the method, it will be 
applied to a structural word HBDS, which describes turn motifs a very 
recurrent motif in loop structures.

Prediction of YUOD motif allowing the prediction of ATP-
binding sites

YUOD functional specificity

Fragments encoded into YUOD (Figure 5a presents a 
superimposition of such fragments) have been identified in [24] 
as over-represented in the SCOP superfamily P-loop-containing 
nucleotide triphos- phate hydrolase. Subsequently, it has been shown 
that YUOD is located in binding sites to ATP/GTP (Adenosine/
Guanine-5’-triphosphate), which provide by hydrolyze the required 
energy for chemical and metabolism reactions in cells. YUOD is 
associated to ATP/GTP binding sites (denoted NP bind ) with a 
sensitivity of more than 35% meaning that more than one third 
of ATP/GTP binding sites adopt con- formations described by 
YUOD. This figure has to be interpreted knowing that NP bind 
sites are mostly divided into two distinct parts, one being very 
often encoded into YUOD.

In our database, YUOD was found 180 times in 178 different 
proteins. By comparing the location of YUOD fragments and 
functional NP bind annotations extracted from Swiss-Prot 
[37], the NP bind site is NOT overlapping YUOD in only 10 
proteins, in all other cases (93.5%) at least one out of the seven 
positions constituting YUOD is contained in the annotated 
site. This confirms the strong link between YUOD and NP bind 
sites. Moreover, this structural word has a high sequence specificity 
(Figure 5b). Thus, this structural word is a very good candidate for 
prediction NP bind motif from AA sequence.

YUOD prediction

To test the efficiency of our model to predict the YUOD 
motif directly from its AA-sequence, we applied our model on the 
178 proteins containing this word. The ROC curve associated to the 
logarithm of the computed probability (given by Eq. 1) is shown 
in Figure 6a. It displays sensitivity and specificity according to the 
probability threshold chosen to split the words into YUOD and 
YUOD (not YUOD). The associated AUC is 0.987. Hence, the 
computed probability is really efficient to identify YUOD among 
all other words. Such a quality is particularly valuable because of 
the ratio between the two classes: YUOD only represents 0.52% 
of studied words.

Then, according to the application requirements, several Figure 4: Method global unfolding.
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probability thresholds can be defined providing different balances 
between sensitivity and specificity. Some interesting threshold 
values and their corre- sponding parameters are enclosed in Table 
1. Very high values of specificity have been chosen, indeed the 
YUOD class is really large and then only 1% of false positive can 
be a large number when applied to big or several proteins.

An example of YUOD detection is given in Figure 6b. It 
concerns the Circadian clock protein kinase kaiC, chain A (pdb ID: 
2gbl A). It originally contains two true YUOD occurrences and 
four have been predicted through our model. Two of them (# 1 
and 2) are exactly located at co-crystallized ATP binding sites (A 
and B). Moreover, between the two false positives, number 3 adopts 
a 3D conformation which is really close to the one observed at 
ATP binding sites. This example demonstrates the difficulty of 
evaluating a prediction method for annotations. The evaluation of 
true positive and false negative can be really precise when dealing 
with manually annotated and reviewed databases such as SwissProt 
but false positives may be true positive that have not yet been 
experimentally verified.

From YUOD to NP bind sites prediction

62.0% of NP bind sites (recovered from either SwissProt or 
PDB co-crystallization study) are predicted as YUOD by our 
method by using a threshold of -4732, 91.5% with a threshold of 
-4805 and 96.0% with a threshold of -4829. Yet, only 93.5% of those 
sites are really encoded into YUOD. It has been shown that NP 
bind sites could be encoded into words close to YUOD such as 
KUOD [24]. Hence, not only our method is able to very efficiently 
predict the true presence of YUOD but it also enables to recover 
motifs which are close to YUOD but not exactly encoded into it 
(6.5% in this case) whereas they are really associated to NP bind 
sites. In this way, our method takes into account the structural 
variability of the binding site. 

Comparison with other NP bind sites prediction 
methods

Comparison with SitePredict [35] SitePredict uses Random 
Forest [38] to combine multiple properties associated with ligand 
binding sites in order to predict which residues in a protein bind 
the ligand. It is particularly interesting to compare SitePredict 
with our method because it also provides a probability score which 
reflects the likelihood that the site binds a particular ligand.

SitePredict was applied to predict the NP bind site in the 
178 proteins. No NP bind site has been pre- dicted in 8.1 % 
of the proteins containing verified NP bind sites. A potential 
NP bind site has been predicted at the wrong place in 15.5 % of 
those proteins. The remaining proteins have been given a positive 
probability that a NP bind site overlaps the true site. However, 

28.1 % of those sites have less than 0.5 probability of being a 
NP bind site. 28.1% of those sites have a probability higher than 
0.6995 which corresponds to the sensitivity obtained by our method 
for a threshold of -4732, whereas we retrieve 60% of the true NP 
bind sites with this threshold. The SitePredict AUC is 0.6179. This 
value is not directly comparable to the one obtained for YUOD 
recognition by our method (that is to say 0.9866) as it does not 
concern YUOD but NP bind sites. However, as it has been verified 
that YUOD is overlapping the true NP bind site in 93.5% of this 
dataset, our method is likely to perform better. Moreover, for a 
specificity of 0.95, SitePredict achieves a sensitivity of 0.37 and 
a specificity of 0.99 corresponds to a sensitivity of 0.22. Hence, it 
appears that SitePredict is less sensitive than our method to find 
NP bind sites.

Comparison with PROSITE [36] 

PROSITE is a database of entries which describes not only 
protein domains, families and functional sites but also associated 
patterns and profiles to identify them. It is associated to ProRule 
which is a database of rules whose predictive ability is enhanced 
by taking into account information about functionally and/or 
structurally critical AAs. The motif corresponding to NP bind is 
denoted PS00017. The corresponding consensus pattern is [AG]-
x(4)-G-K-[ST]. It can be noticed that this pattern has much 
in common with YUOD logo (Figure 5b). However, due to 
the deterministic aspect of the corresponding rule, there is no 
probability score associated to the prediction. Hence, it is not 
possible to compute an AUC for this method. Nevertheless, we 
can retrieve that none NP bind site has been predicted in 13.0% 
of the proteins containing verified NP bind sites. A potential 
NP bind site has been predicted at the wrong place in 6.8% of 
the proteins. Hence, the method performs better than SitePred 
to identify the real location of the NP bind site but it is less 
efficient to identify whether or not a given protein contains a 
NP bind site. This limitation of PROSITE is probably due to its 
deterministic way of making a prediction, which makes it really 
precise but a bit too specific.

Finally, it is really difficult to compare different methods of 
function prediction given that the way a function is defined can 
be not unique. However, it appears that the proposed method is 
really powerful. Furthermore, it could be even better by taken 
into account alternative motifs describing different kinds of NP 
bind sites.

(a) weblogo.berkeley.edu
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Figure 5: (a) Representation of several fragments encoded into YUOD. (b) 
Weblogo of the AA sequences encoded into YUOD.

(a)
(b)

Figure 6: (a) ROC curve associated with the probability of having YUOD for a 
given seven AA fragment (Se=sensitivity, Sp=specificity). (b) 3D representation 
of 2gbl A co-crystallized with two ATP molecules (indicated by lettered circles). 
The fragments identified as YUOD are indicated with numbered arrows.
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Other application examples

Prediction of a SAH/SAM-binding site specific 
motif using RUDO word

 In this section, we focus on the RUDO prediction. 
This structural word has been identified to be most of time 
associated to SAH/SAM (S-adenosyl-methionine/S-adenosyl-
homocysteine)-binding site in Swis- sProt database. SAH/SAM 
are molecules associated to some methylation processes and are 
particularly studied in the context of antiviral drugs research. Yet, 
to the extent of our knowledge, the prediction of their binding 
to proteins is not proposed by existing method. As RUDO has a 
good sequence specificity [24], it is a good candidate to predict 
SAH/SAM-binding sites.

To test the efficiency of our model to predict the RUDO 
word, which is less studied than YUOD word, we applied our 
model to the 39 different proteins containing this word. The 
obtained AUC is 0.9606. The specificity and sensitivity obtained 
with different thresholds are given in Table 1. Thus, results are 
satis- fying and allow to recover more than two thirds of the 
RUDO motifs without wrongly assigning more than 1% of the 
other words.

An illustration can be found in Figure 7a. It concerns 
isoloquiritigenin 2’-O-methyltransferase (PDB ID:1fp1) which was 
co-crystallized with a SAH molecule. Four words were predicted 
as RUDO with a threshold of -4712 whereas only one has been 
encoded as RUDO. However, by looking of the 3D conformation, 
it appears that all four identified fragments are really closed to 
the ligand. Thus, the method that uses the HMM-SA as a tool to 
discover patterns, is not limited to the fragments being strictly 
encoded but is also able to discover fragments with close structures.

Prediction of HBDS word allows the prediction of 
a specific turn

The four-SL word HBDS (the corresponding fragment 
conformations are shown in Figure 7b) can be linked to turns [24]. 
Turns are elements of secondary structure where the polypeptide 
chain reverses its overall direction. As they may play a role in 
protein folding, they are likely to allow chains to become closer 
making some interactions possible [39].

As HBDS presents AA specificities, it is a good candidate to 
predict this turn motif from AA sequence. To test this hypothesis, 
we applied our model to the 1363 different proteins containing 
this word, seen 1633 times in this set of proteins. The obtained 
AUC is 0.9359. Table 1 indicates the specificities and sensitivities. 
The results are a bit less efficient than previous ones (due to a 
lower sequence specificity) but enable to locate 85% of those turns 
with a specificity of 90% (knowing this specificity is likely to be 
underestimated because of close fragments which have not been 
strictly encoded into HBDS).

Discussion

We have previously developed an original approach based on 
the structural alphabet HMM-SA and the notion of structural 
words to extract structural motifs of importance for structure 
and/or function of proteins. We propose a new method to 
predict these important motifs directly from their AA sequence. 
The proposed method is based on the identification of structural 
words of interest on 3D structures simplified through HMM-SA as 
proposed in [24]. The input data of the described method are only 
AA sequences and as a consequence, only structural words having 
sequence specificities will be likely to be handled with this method. 
But for this kind of motifs, the method is really powerful.

Thanks to the two-step approach, as much information as possible 
is extracted from data. The dependence between AA sequences and 
3D structures is learnt through HMM-SA. It provides, for a given 
four-AA fragment a profile of potential corresponding SLs. The 
second step firstly quantifies and uses the strength of dependency 
between AAs and SLs confusion probabilities: some observations 
will be really trusted whereas others will be considered with care. 
Secondly, the dependency between successive SLs is taken into 
consideration by the computation of transition probabilities. 
It has to be noticed that the first step is motif independent 
whereas the model of the second step is motif specific. A complete 
model is obtained by the combination of both steps providing for 
each input AA fragment a probability of correspondence with 
the target motif. This combination of viewpoints between motif 
independent and motif dependent steps is certainly a strength of 
our method, the method becoming more and more driven as the 
process progresses.

This method is able to identify fragments as being close to the 
target motif even if this fragment would not be encoded into the 
exact previously identified target word. Hence, relying on sequences 
has drawbacks as it is less conserved than structure by evolution 
but it can be a way to overcome some cases of flexibility. Actually, 
HMM-SA encoding and the proposed prediction method are 
interestingly complementing each other in the prediction of 
motifs of interest.

Furthermore, the important adaptability of the prediction 
method is of big interest. Even if our method has been developed as 
a continuation of the work performed in [24], it can be immediately 
generalized to words of more than four SLs, no additional learning 
would be required compared with any other new four-SL word. 
Moreover, it is completely possible to identify 3D motifs of interest 
by any method, to encode it into HMM-SA and to build the model 
corresponding to the obtained word. For a given loop it took less 
than one second to compute the probability for one given motif 
to be present at each position. Concerning learning it will obviously 
depend on the alphabet and length of the word. For example, in 
our case it took about 5 hours to learn YUOD on our dataset. 
It must be noticed that the genetic programming step has to be 
performed only once for a given alphabet, this is the most time 
expensive step, then the second most expensive step is the learning 
of a given word, which is done once for each new word. Those two 

SL word YUOD RUDO HBDS

Threshold -4829	 -4805	 -4732 -4903	 -4806	 -4712 -4013	 -3844	 -3777

Specificity 90.02 	 95.07 	 99.00 90.00 	 95.00 	 99.00 90.17 	 95.11 	 98.88

Sensitivity 97.81 	 93.44 	 69.95 87.18 	 84.62 	 69.23 84.71 	 71.07 	 28.93

Table 1: Sensitivity and specificity obtained for the identification of YUOD, RUDO and HBDS according  to the chosen log (probability) threshold.
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steps do not concern daily use of the method which only implies 
application of learnt most and which takes up to a few seconds 
according to the protein length.

Moreover, concerning the size of the learning dataset, as 
illustrated through the examples, it can be really variable (from 35 
to 1633 occurrences according to the motif). Obviously, the bigger 
the learning set, the higher the reliability of the obtained model. 
But, when the sequence specificity is strong, only a small number 
of learning observations can be used to learn interesting models.

The only variable parameter depending on the learnt motif is 
the threshold chosen for the log(probability) to decide whether or 
not a fragment corresponds to the considered motif. Preliminary 
studies seem to indicate that this threshold depends on the 
strength of the sequence specificity of the motif. Anyway, the ROC 
curve automatically obtained during model building can be used 
to set the threshold value. In our approach, given the unbalanced 
ratio between the two groups, we chose to set the threshold 
thanks to specificity values.

The limits of the method are interlocked with its strengths. 
First of all, as previously indicated, only motifs with sequence 
specificities can be predicted. Moreover, a 1D intermediate is 
necessary. HMM-SA has been used because of its very interesting 
abilities of precise description especially for loops, but the same 
methodology could be applied with any other alphabet.

This work shows that the prediction of functional words, i.e., 
structural words located in a functional site, allows the prediction 
of functional sites such as ATP, SAM/SAH-binding sites. Thus our 
method could be used to help the prediction of protein function. 
Moreover, it is completely possible to learn several motifs linked to 
a given function and to give a global prediction for all of them. 
This will be quickly possible by the identification of new motifs 
which is in progress.

The method codes can be obtained by request to the first 
author.
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