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Abstract

Dexamethasone (DEX) to promote an increase in levels of corticosterone, the hormone that initiates stressful
responses. We analyzed the effect of DEX on spatial learning and memory (Morris water maze) in young male
Sprague-Dawley rats. We administered two different treatment regimens of daily 0.2 mg/kg DEX as independent
variable. One treatment consisted of DEX treatment for 5 days, and the second consisted of DEX treatment for 14
days. The short-term treatment promoted improved spatial learning without any effects on memory. The long-term
treatment caused deficits in spatial learning and memory. We also observed that a Control group (CON) treated for
14 days with a vehicle (SSI: 0.9% saline solution) was more efficient in the test compared with a control group that
was treated for 5 days with SSI. These results show that simply the time of exposure to stressful stimuli as injection,
can cause changes in the Morris water maze execution.
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Introduction
Dexamethasone (DEX) is a synthetic glucocorticoid widely

prescribed during late gestation to promote maturation of fetal lungs
[1]. DEX and other synthetic glucocorticoids are also prescribed for
treatment of arthritis, asthma, autoimmune diseases and other
inflammatory disorders [2]. However, these drugs can induce a variety
of psychiatric symptoms such as depression, mania and affective
psychosis [3,4]. In rats, these symptoms reflect damage to
hippocampal pyramidal cells, and to neurons of the caudal striatum,
globus pallidus, putamen and dentate gyrus [5,6]. DEX is commonly
used experimentally to study the effects of stress [7]. In the present
study, we evaluate the effect of DEX on spatial learning and memory
after short- and a long-term treatment in juvenile rats.

Material and Methods

Animals
We used 34 male Sprague-Dawley rats that were 35 days of age and

had an average weight of 128.97 ± 3.33 g. They were housed in the
Vivarium Claude Bernard of the Universidad Autonoma de Puebla,
México. The animals were maintained under a 12:12 hr light-dark
cycle and with adlibitum access to food and water. All animal
procedures were performed according to the Technical Guide for the
production, care and use of laboratory animals issued by SAGARPA,
Mexico (NOM-052-ZOO 1999) and the National Institutes of Health
Guide for the Care and Use of Laboratory Animals.

Dexamethasone treatment
The first group of rats (n=9) received 0.2 mg/kg of DEX (Alin,

Chinoin Depot Pharmaceuticals Ltd) dissolved in a 0.9% saline
solution (SSI) for five consecutive days. A second group (n=8) received
the same dose of DEX for seven days, followed by seven days of no
medication, followed by an additional seven days of DEX, for a total of
14 days of DEX medication. The control groups (n=9 and n=8 to the
first and second group of DEX, respectively) received only the saline
solution. The DEX and SSI were administered intraperitoneally at a
relation volume:body weight of 1 ml/1 kg between 0900 and 1000
hours. These treatments are related with short and long dosage time.
In toxicity studies is considered acute scheme when dosage time is by
one week or less (three doses for example) while when treatment is
longer that is considered by chronic treatment [8].

Spatial learning and memory
We evaluated the spatial learning and memory ability of the rats

using a Morris water maze on the day after completion of the DEX
treatment. The test apparatus was a cylinder that was 135 cm in
diameter at the base, 180 cm in diameter internally, and 80 cm deep.
The cylinder was filled with water to a depth of 42 cm. The water was
tinted with titanium dioxide and was maintained at 22 ± 2°C during
testing. The swimming surface was divided into four imaginary
quadrants with reference to cardinal compass points. A circular escape
platform (15 cm in diameter) was placed in the southeast quadrant at a
depth of 40 cm. Noise was minimized in and around the cylinder, and
extra-labyrinthine signals were placed as reference points for the
location of the platform.

The complete test consisted of a learning phase (20 trials per rat)
and a memory phase (4 trials per rat), which together were applied
over 6 days (4 trails per day). For both phases, the results were
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measured as escape latency in seconds, defined as the time to reach the
escape platform. We began all of the trials by dropping the rat gently
onto the surface of water. In the learning phase, during the first four
trails, the rats were allowed to swim by 120 seconds or until they found
the escape platform. They were then allowed to remain on the
platform for an additional 30 seconds to promote learning of the
platform´s location. On trials 5 to 20 (2 to 5 days) the rats were
allowed to swim for 120 seconds or until they found the platform, and
were then removed immediately. After the final tests of the learning
phase, the rats were allowed to rest for 16 days. We then began the
memory phase, in which half the rats were subjected to 4 trials in the
cylinder to measure spatial memory.

The dependent variable in both phases was escape latency,
measured as the time in seconds to reach the escape platform.

Statistical analysis
The means of the escape latencies of blocks of four daily trials per

rat were used for statistical analysis. We used repeated Two-way
ANOVA for analysis, with treatment and test phase as independent
variables. The significance level was set at P<0.05.

Results
All of the animals, regardless of dose or treatment group, showed a

decrease in escape latency during the trials. This indicates that they all
learned how to escape. Figure 1A and Figure 1B show the results of
five days of DEX treatment on learning and on memory. Figure 1C
and Figure 1D show the results of 14 days of DEX treatment on
learning and on memory.

Figure 1: DEX effect on spatial learning and memory (Morris water
maze). A) Complete test over five days of treatment. B) Escape
latency in the learning phase was decreased in rats after five days of
treatment with DEX (P<0.0001). C) Complete test over 14 days of
treatment. D) Escape latency in the learning and memory phase
was increased in rats after 14 days of treatment with DEX (P<0.05).
The data are shown as the means ± SE.

Five days of DEX treatment resulted in a decrease in escape latency
(DEX:F(1,48)=22.18, P<0.0001) during the learning phase (Figure 1A).
However, the memory phase was not affected (Figure 1B;
DEX:F(1,32)=8.739, P=0.0058; Phase:F(1,32)=34.97, P<0.0001;
interaction DEX x Phase:F(1,32)=1.825, P=0.6160). Fourteen days of
DEX treatment resulted in an increase in escape latency (Figure 1C;
DEX:F(1,42)=19.48, P<0.0001) in both the learning and memory phases
(Figure 1D; DEX:F(1,28)=14.43, P=0.0007; Phase:F(1,28)=27.04,
P<0.0001; interaction DEX x Phase:F(1,28)=0.2589, P=0.6149).

Table 1 shows the mean values of escape latency of the control rats
(CON Groups) that received either 5 or 14 days of saline solution
intraperitoneally. The 14 day control rats showed larger decreases in
escape latencies compared with the 5 day control rats. This result was
observed in both the learning phase (DEX:F(1,30)=0.2992, P=0.5884;
Treatment days:F(1,30)=2.219, P=0.1467; Interaction DEX x Treatment
days:F(1,30)=12.61, P=0.0013) and the memory phase
(DEX:F(1,30)=1.901, P=0.1781; Treatment days:F(1,30)=0.4910,
P=0.4889; Interaction DEX x Treatment days:F(1,30)=9.796, P=0.0039).

Phase Treatment
days

Mean ± SE n P

Learning 5 44.45 ± 3.95 9 <0.05

14 27.61 ± 2.89 8

Memory 5 21.35 ± 3.48 9 <0.01

14 10.19 ± 2.01 8

Table 1: Escape latency (in seconds) of control rats during the learning
and memory phases (Morris water maze). Animals received SSI (0.9%)
at a dose of 1 ml/1kg body weight, intraperitoneally.

Discussion
We show in the present study that short treatment with DEX

promotes improved performance on the Morris water maze but long
treatment produces performance deficits on the same test. Also we
highlight that, chronic administration of a saline vehicle produces
more efficient spatial learning and memory.

Previous studies have demonstrated that high doses of DEX cause
hippocampal neuronal death, alterations in glucocorticoid expression
and alterations in granular layers of the dentate gyrus [9,10]. In
contrast, the low doses used in the present work do not cause neuronal
death [11,12] but alterations in spine dendritic density of the dorsal
hippocampus have been reported [13]. These effects can be related
with deficits in learning and memory.

Stress hormones, principally corticoesterone, are released during
the learning process and participate in the establishment of long-term
memory [14] by increasing spine density in CA1 pyramidal neurons
[15]. However, large amounts of these hormones produce deficits in
spatial learning and other cognitive activities [16]. In hypoxia-
isquemic models, in which a reduced capacity for spatial learning has
been shown, treatment with DEX results in improved learning [17].
DEX is therefore not harmful in itself but high doses of this drug are
responsible of their side effects. This synthetic glucocorticoid is used as
an initial treatment in various diseases because it has anti-
inflammatory and immunosuppressive properties [18]. However, the
use of high doses of DEX must be considered carefully because of their
effects on learning and cognitive capacities [19].
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Learning and memory have been evaluated after exposure to such
stressors as short and long periods of chronic restraint, social stress or
unpredictable stress. Although short periods of stress improved
learning, long periods produce important deficits without alterations
in memory [20]. The longer period of DEX treatment in this study also
had negative effects on memory.

The hippocampus plays an important role in encoding,
consolidation and processing information to generate learning and
memory in both rodents and humans [21]. The hippocampus also
shows balanced Mineralocorticoid (MR) and Glucocorticoid (GR)
receptor expression. However, stress can produce alterations in
regulatory mechanisms and promote chronic hyperactivity of the HPA
[1]. This causes hippocampal atrophy and neuronal death [6,22],
decreased neurogenesis in the dentate gyrus, deficits in cognitive
activities, suppression of Long-term Potentiation (LTP) and burst
stimulation. In contrast, stress causes hypertrophy in CA1 neurons
[20] that may be reflected in the decreased escape latencies observed in
the present study and then learning and memory capacities improved.
When DEX is applied to CA1 neurons in vitro has also been observed
to increase dendritic spine density, which leads to the development of
LTP [23].

The molecular mechanisms associated with stress and with DEX
effects on neuronal activity and improved cognitive functions involve
genomic and non-genomic responses to glutamate and NMDA
receptor metabolism. Changes in receptor function are necessary for
LTP and LTD expression and the consequent changes in cognitive
functions [24]. All of the changes are age-dependent as evidenced by
young individuals being more susceptible than older individuals to
harmful effects [25].

Chronic stress models involve repetitive application of the same
stressor. Such stressed individuals do habituate and adapt to the
stressor [26], perhaps because of a decrease in GR expression and
changes in spine density [27,28]. However, acute or chronic DEX
administration after SSI results in negative effects in the hippocampus
and striatum [5]. We noted in the present experiment that the control
rats that received only the vehicle (SSI) were more efficient in
responding to the Morris water maze. We suggest that the single
injection of SSI and water immersion promote an increase in
glucocorticoid levels [29], which promotes readiness of response to
any environmental demand.

In summary, DEX has two operating modes [30] on spatial learning
and memory capacity in young rats. Its effects differ after short and
long treatments, allowing us to suggest that stress generated by
exposure to stressful stimuli becomes harmful only when exposure to
the stressor is prolonged.
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