
Volume 7(3)079-088 (2014) - 079
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Research Article Open Access

Ochieng and Mwangi, J Comput Sci Syst Biol 2014, 7:3
DOI: 10.4172/jcsb.1000141

Research Article Open Access

Keywords: Pairwise; Judgment matrix; Incremental estimation

Introduction
Before development of any software, it is vital for proper planning

to be conducted. Projected size of the software to be developed is an
important variable that is needed by software project managers to
estimate the cost of the software, number of people to allocate to the
development of the software and the number of months or duration
the development lifecycle will take. Since software size estimate prior to
development is non-existence or abstract, it needs experienced human
judgment to estimate the size of the software prior to development.
The idea of using human experience and judgment fits well in the
field of Human-centered computing (HCC). In these stages most
of the required information is not available. To help them in this
difficult task, prediction models and the experience of past projects
are fundamental. Software size metrics play a significant role to the
success of this task. Unfortunately the existing software size estimation
models still produce size estimates which have been blamed for
software development failures. The popular computing literature is
awash with stories of software development failures and their adverse
impacts on individuals, organizations, and societal infrastructure.
Indeed, contemporary software development practice is regularly
characterized by runaway projects, late delivery, exceeded budgets and
reduced functionality and questionable quality that often translate to
cancellations, reduced scope and significant rework circles [1].

The net result is an accumulation of waste typically measured in
financial terms (always billions of dollars) [2]. The Standish Group [3]
makes a distinction between failed projects and challenged projects.
Failed projects are cancelled before completion, never implemented, or
scrapped following installation. Challenged projects are completed and
approved projects that are over budget, late, and with fewer features
and functions than initially specified. Most organizations are constantly
searching for ways to improve their project management practice and
reduce the likelihood of failures and the degree to which their projects
are challenged. Typical projects entail a balancing act between the triple
constraints of budget, schedule, and scope. Tradeoffs and adjustments
are therefore made by restricting, adding to, or adjusting the cost, time,

and scope associated with a project. Indeed the traditional triangle in
project management is said to be concerned with finding a balance
between cost, time, and scope as show in Figure 1.

For example, the more that is requested in terms of scope (or
arguably even the performance or the quality), the more it is likely to
cost and the longer the expected duration. If the client needs to have a
certain performance delivered very rapidly, this will increase the cost
due to the need to work faster and have more people involved in the
development. The more features expected from a system, the higher
the cost and the longer the expected duration. Conversely, if the costs
need to be kept to a minimum, one may need to consider the essential

*Corresponding author: Peter Ochieng, Department of Mathematics and
Informatics, Taita Taveta University, Kenya, Tel: 254720965541; E-mail:
onexpeters@gmail.com

Received March 14, 2014; Accepted April 15, 2014; Published April 18, 2014

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental
Software Development Based On Improved Pairwise Comparison Matrices. J
Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Copyright: © 2014 Ochieng P, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
Software sizing is a crucial activity among the task of software management. Work planning and subsequent

estimation of effort required is based on the estimate of the software size required. Software developers are realizing
the need to speed up the development process to respond to customers’ needs. This has resulted in adoption of
rapid development methods and adoption of agile methodologies.

Incremental method of software development has been adopted as one of the methods to speed up software
development. Unfortunately there is little work that has been done to develop a clear framework to estimate software
size and cost in incremental software development environment.

This research work proposes the use of Pairwise Comparison matrices framework to estimate size and cost in
incremental software development and evaluate the pairwise comparison framework against Putman’s size estima-
tion model to determine if it produces more accurate results in terms of estimation of size relative to actual size.

Software Size Estimation in Incremental Software Development Based On
Improved Pairwise Comparison Matrices
Peter Ochieng1* and Waweru Mwangi2

1Department of Mathematics and Informatics, Taita Taveta University, Kenya
2Institute of Computer Science and Information Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Kenya

Scope

Time Cost

Figure 1: Traditional triangle in project management.

Journal of

Computer Science & Systems BiologyJo
ur

na
l o

f C
om

pu
ter Science & System

s Biology

ISSN: 0974-7230

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison
Matrices. J Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Volume 7(3)079-088 (2014) - 080
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

performance, or the overall scope, and compromise there. Many
managers quickly discover that the triangle is not flexible. In order to
address the challenge. In order to address lack of clear framework of
software size estimation this paper proposes to develop software size
estimation framework for incremental development environment
using pairwise comparison matrix

Literature Review
In general size estimates of an application is presented as lines of

codes (LOC) or function points (FP). There are techniques that can
be applied to convert function points to lines of code for specific
language, and vice versa. One of the best techniques used to do this is
called backfiring technique [4]. This paper will focus on the methods
using LOC since our new methodology also uses LOC, this will make
comparison between the methods easy.

Lawrence H. Putnam LOC Estimation

A SLOC estimate of a software system can be obtained from
breaking down the system into smaller pieces and estimating the
SLOC of each piece. Putnam suggests that for each piece, three distinct
estimates should be made [5]:

Smallest possible SLOC – a

Most likely SLOC – m

Largest possible SLOC – b

Putnam suggested that three to four experts make estimate of a,
b, c for each function. Then the expected SLOC for piece iE can be
computed by applying beta distribution as shown in equation (1.0)

4
6i

a m bE + +
= 				 (1.0)

The expected SLOC for the entire software system E is simply the
sum of the expected SLOC of each function as shown in equation (1.1)

1
n
i iE E== ∑ 				 (1.1)

where n is the total number of pieces.

An estimate of the standard deviation of each of the estimates iE
can be obtained by getting the range in which 99% of the estimated
values are likely to occur and dividing by 6 as shown in equation (1.2).

6i

b a
SD

−
= 					 (1.2)

standard deviation of the expected SLOC for the entire software system
SD is calculated by taking the square root of the sum of the squares of
standard deviations of each estimate iSD as shown in equation (1.3)

1 1
n
iSD SD== ∑ 				 (1.3)

where n is the total number of pieces.

Therefore the total software size is expected to lie in the range
expressed in equation (1.4)

E SD± 					 (1.4)

Where E is the estimated size of the entire system computed as
shown in equation (1.1)

With real experience this method can yield accurate results [6],
though it also faces criticism of the allowed range of the size estimate
as shown in equation (1.3) being large hence the estimate cannot be
narrowed down to given value.

Developer opinion and previous project experience

Software cost estimates are typically required in the early stages of the
life-cycle when requirements and design specifications are immature.
Under these Conditions, the production of an accurate cost estimate
requires extensive use of expert judgment and the quantification of
significant estimation uncertainty. Research has shown that under
the right conditions, expert judgment can yield relatively “accurate”
estimates [5]. Unfortunately, most expert judgment-based estimates
do not meet these conditions and frequently degenerate into outright
guessing. At its best, expert judgment is a disciplined combination of
a ‘best guess’ and historical analogies. Developer opinion is otherwise
known as guessing. If you are an experienced developer, you can likely
make good estimates due to familiarity with the type of software being
developed. How well this estimates are, depend on the expertise of
the person giving the estimate hence it cannot be empirically proved
but only to trust the estimates. But in case of good experience by the
developer it can yield good estimates.

 Looking at previous project experience serves as a more educated
guess. By using the data stored in the metrics database for similar
projects, you can more accurately predict the size of the new project.
If possible, the system is broken into components, and estimated
independently.

Count Function Blocks

The technique of counting function blocks relies on the fact that
most software systems decompose into roughly the same number
of “levels” [5]. Using the information obtained about the proposed
system, follow these steps:

1. Decompose the system until the major functional components
have been identified

(Call this a function block, or software component).

2. Multiply the number of function blocks by the expected size of a
function block to get a size estimate.

3. Decompose each function block into sub functions.

4. Multiply the number of sub functions by the expected size of a
sub function to get a second size estimate.

5. Compare the two size estimates for consistency.

Compute the expected size of a function block and/or a sub
function with data from previous projects that use similar technologies
and are of similar scope.

If there are no previous developments on which to base expected
sizes, use the values 41.6 KSLOC and 4.16 KSLOC for the expected size
of function blocks and sub functions respectively. These values were
presented by Gaffney [4] as reasonable sizes for aerospace projects
(real-time command and control systems). It has the disadvantage
that it requires that one is well knowledgeable on the software to be
developed in order to decompose it to blocks and sub functions.

Function Point Analysis
Function points allow the measurement of software size in

standard units, independent of the underlying language in which the
software is developed. Instead of counting the lines of code that make
up a system, count the number of externals (inputs, outputs, inquiries,
and interfaces) that make up the system.

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison
Matrices. J Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Volume 7(3)079-088 (2014) - 081
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

There are five types of externals to count:

1. External inputs- data or control inputs (input files, tables, forms,
screens, messages, etc.) to the system

2. External outputs- data or control outputs from the system

3. external inquiries--I/O queries which require a response
(prompts, interrupts, calls, etc.)

4. External interfaces- libraries or programs which are passed into
and out of the system (I/O routines, sorting procedures, math libraries,
run-time libraries, etc.)

5. Internal data files-groupings of data stored internally in the
system (entities, internal control files, directories)

Apply these steps to calculate the size of a project:

1. Count or estimate all the occurrences of each type of external.

2. Assign each occurrence a complexity weight

3. Multiply each occurrence by its complexity weight, and total the
results to obtain a function count (Table 1).

4. Multiply the function count by a value adjustment multiplier
(VAM) to obtain the function point count. 14

1 0.01 0.065i iVAM v== ∑ × +

Where Vi is a rating of 0 to 5 for each of the following fourteen
factors (i). The rating reflects how each factor affects the software size.

1. data communications

2. distributed functions

3. performance

4. heavily used operational configuration

5. Transaction rate

6. On-line data entry

7. design for end user efficiency

8. On-line update of logical internal files

9. complex processing

10. reusability of system code

11. installation ease

12. operational ease

13. multiple sites

14. ease of change

Assign the rating of 0 to 5 according to these values:

0 - factor not present or has no influence

1 - insignificant influence

2 - moderate influence

3 - average influence

4 - significant influence

5 - strong influence

Function point analysis is extremely useful for the transaction
processing systems that make up the majority of MIS projects.
However, it does not provide an accurate estimate when dealing with
command and control software, switching software, systems software
or embedded systems.

Pairwise comparison matrix size estimation framework

In 1977, Saaty [7] argued that like a physical measurement scale
with a zero and a unit to apply to objects, we can also derive accurate
and reliable relative scales that do not have a zero or a unit by using
our understanding and judgments that are the most fundamental
determinants of why we want to measure anything [7,8]. He showed
that AHP (Analytic Hierarchy Process) can be used to solve the Multi
Criteria Decision Making (MCDM) problem. MCDM is referring
to making decision in the presence of multiple criteria. Zahedi [9]
summarizes the original AHP procedure by Saaty [7,8] into four phases:

1.	 Break the decision problem into a hierarchy of interrelated
problems.

2.	 Provide the matrix data for pair wise comparison of the
decision elements.

3.	 Using Eigenvector Method (EV) as a prioritization method.

4.	 Aggregate the relative weights of the decision

The most integral part of Analytical Hierarchical Process (AHP) is
a pairwise comparison matrix. A pairwise comparison matrix provides
a formal, systematic means of extracting, combining, and capturing
expert judgments and their relationship to analogous reference data
(historical data) [6]. Bozoki gives a more detailed description of his
approach in his paper [5]. Using a pairwise comparison matrix to
estimate software size in incremental development requires an expert’s
judgment on increments’ relative size compared to one another. The
effectiveness of this approach is supported by experiments that indicate
that the human mind is better at identifying relative differences than
at estimating absolute values [9]. Many adjustments have been made
to the original AHP procedure that was proposed by Saaty [7] in
1977 by different authors. This research work therefore intends to use
some of these modifications and further adapt it in order to fit it in
the estimation of software size and cost in incremental development.
Analytical Hierarchy Process (AHP) therefore

Step 1: Rank the increments

Rank the increments from the largest to the smallest. An expert
ranks the increments to be developed starting with the one he perceives
to be the largest to the smallest. Though this step is not mandatory it
lessens work during comparison.

Step 2: Create a pairwise matrix

Pairwise matrix begins with creating a judgment matrix to solve
the sizing problem in incremental software development. Creating a
judgment matrix involves creating an n x n matrix ()n n

i jA a× = , where
n is the number of increments to be developed in order to deliver the
whole software. Note that in incremental software development the
total software is delivered in a series of increments and demonstrated
in equation (3.1)

Description Low medium High
external inputs 3 4 6
external outputs 4 5 7
external inquiries 3 4 6
external interfaces 5 7 10
internal data files 7 10 15

Table 1: Complexity weights are.

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison
Matrices. J Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Volume 7(3)079-088 (2014) - 082
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Total software= 1
n
i iincrements=∑ 		 (3.1)

(The assumption in equation (3.1) is that all the increments are
independent and the gluing code i.e. extra code for integration has been
factored in. This assumption will be addressed fully in this thesis)

Element, aij in the matrix is an estimate of the relative size of
increment i with respect to increment j, i.e.

i j j k ika a a
n n

× =

× 					 (3.2)

Judgment matrix should have two critical properties

1. 1/i j i ja a= which means that increment i is i ja times bigger than
increment j, then increment j is 1/ i ja times smaller than entity i;

2. An increment is same size as itself meaning that all diagonal
elements i ja = 1.

The implication of these properties is that an expert is only required
to fill the upper or lower triangle of the judgment matrix. For example,
see Table 2, which is a judgment matrix with estimates of the relative
software size of four increments. The values in Table 2 row 1 indicate
that increment I is i ja as big as increment, ika bigger than increment K,
and ila bigger than increment L. The remaining entries are interpreted
in the same manner.

Taking an example of four increments that are to be developed to
deliver the whole software namely increment I, increment J, increment
K, increment L we create a pairwise comparison matrix of n=4 (the
matrix is depicted here as a table with the sole purpose of increasing
understanding and making comparison concept clear to all).

Create matrix consisting of n increments in this case four
increments and an expert fills the elements according to his or her
perceived relative size of one increment in respect to the other (Table 2).

Note that the expert when filling the judgment matrix is guided by
the scale developed by Saaty [7] as shown in Table 3. The explanation
and definition column of Table 8 are adapted to fit this work as shown
in Table 3.

Applying condition two of the judgment matrix i.e. an increment
compared to itself is the same in terms of size. The diagonal of the
matrix represented in Table 2 is filled making the upper part of the
matrix fully filled leaving only the lower part (Table 4).

Using the first condition of the judgment matrix i.e 1/i j i ja a=
which means that entity i is i ja times bigger than entity j, then entity j

is 1/ i ja times smaller than entity i;

We can now fully fill the matrix i.e. the lower part of the matrix is
filled by considering the reciprocal condition (Table 5).

Step 3: Extract ranking vectors

Now we have a fully filled matrix that gives us relative sizes of
the increments that we want to develop in order to deliver the entire
software. The judgment matrix is interpreted that each column yields
a different ranking vector for the purpose of determining the relative
size of the four increments. Each vector is normalized such that the
increment that corresponds to it (the diagonal elements) is always 1,
and it is the reference increment against which all comparisons in the
same column are made. Therefore, column 1 indicates that increment
J is 1/ i ja as big as increment I; increment K is 1/ ika of the size of
increment I and increment L is 1/ ila of increment I. Each column can

be interpreted in this manner. In this case the ranking vectors are

1
1

1

1

i j

ik

il

a

a

a

 
 
 
 
 
 
 
 
 
  

Increment I Increment J Increment K Increment L
Increment I

ija ika ila

Increment J
jka jla

Increment K
kla

Increment L

Table 2 represents a partially filled matrix

ij ik il

jk jl

kl

a a a
a a

a

 
 
 
 
 

Table 2: Partially filled pairwise comparison matrix showing relative sizes of four
increments.

Intensity of
importance

Definition Explanation

1 Equalsize between the
increments

Two increments are equal in size

2 Weak or slightsize advantage of
one increment over the other

 judgment slightly favor one
incrementover another

3 Moderatesize advantage of one
increment over the other

 judgment moderately favor one
incrementover another

4 Moderate plus
5 Strongsize advantage of one

increment over the other
 judgment strongly favor one
incrementover another

6 Strong plus
7 Very strong or demonstrated

importance
An increment isfavored very
strongly over another

8 Very, very strong
9 Extreme importance The evidence favoring one

increment over another is of the
highest possible order

1.1-1.9 When increments are very close
a decimal is added to 1 to show
their difference as appropriate

Table 3: Modified Saaty scale.

Increment I Increment J Increment K Increment L

Increment I 1
ija ika ila

Increment J 1
jka jla

Increment K 1
kla

Increment L 1

Table 4 represents partially filled matrix

1
 1

 1
 1

ij ik il

jk jl

k

a a a
a a

a

 
 
 
 
 
 
 
 

Table 4: Partially filled matrix where condition2 is applied.

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison
Matrices. J Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Volume 7(3)079-088 (2014) - 083
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

this is the ranking vector from column one the respective ranking

vector generated by column two, three and four are

1
1

1

i j

ik

j l

a

a

a

 
 
 
 
 
 
 
 
  

 1
1

ik

j k

j k

a
a

a

 
 
 
 
 
 
 
 

1

il

j l

k l

a
a
a

 
 
 
 
 
  

respectively. A matrix of n increments will yield four n ranking vectors.
If the ranking vectors are different which is always the case then it
means that there is more estimation uncertainty and extra estimation
needs to be done in order to come up with one ranking vector called
Priority vector. A special case exists when a judgment matrix is perfectly
consistent. This occurs when i j j k ika a a× = all for i, j, k

If judgment matrix is not consistent then we need to go to step 4
otherwise we skip to step 5

Step 4: Compute priority vector

There are some methodologies that have been proposed by different
authors to tackle this problem. The methods are reviewed as follows
without looking at the strengths and weaknesses of each.

Eigen value methodology

Let A be a n n× matrix. A number λ is known as Eigen value of A
if there exists a non-zero vector v such that

 Av= λ v 					 (3.3)

In this case, vector v is called an eigenvector
of vector A corresponding to Eigen value λ
Eigen values and eigenvectors are defined only for square matrices i.e.
the number of rows must be equal to the number of columns in the
matrix i.e. n n× matrix hence works well with the comparison matrix
which must be a square matrix. For a n n× matrix there are n Eigen
values for the matrix. In order to solve for priority vector using this
method we must calculate the Eigenvector corresponding to highest
Eigen value of the judgment matrix that is

Av= λ max v 					 (3.4)

Where λ max is the highest Eigen value of the judgment matrix

The next step is to test if the pair wise comparison matrix is
consistent this is achieved by calculating consistency index (C.I).

C.I = max

1
n

n
λ −

−
 				 (3.5)

Where maxλ is the highest Eigen value of the judgment matrix and
n is the number of rows or column

In accordance with Saaty [7] defined the matrix as consistent
when C.I<0.1 If C.I.>0.1.If C.I falls outside this range he suggested
an algorithm about repeating questions to correct the matrix until it
became consistent.

Normalization of the Row Sum (NRS)

NRS sums up the elements in each row and normalizes by dividing
each sum by the total of all the sums, thus the results now add up to
unity. NRS has the form:

'
1

n
i j i ja a== ∑ 1,2....i n= 			 (3.6)

'

'
1

i
i n

j i

aw
a=

=
∑

 1,2....i n= 		 		 (3.7)

Arithmetic Mean of Normalized Columns (AMNC)

AMNC was also called the Additive Normalization method in
[4]. The new name is relatively clear, in that it describes its calculation
process. Each element in A is divided by the sum of each column in A,
and then the mean of each row is taken as the priority.

'

1

,i j
ij n

i i j

a
a j

a=

=
∑

 1,2.......i n= 			 (3.8)

'
1

1 n
i i jw a

n == ∑ 1,2.......i n= 			 (3.9)

Normalization of Reciprocals of Column Sum (NRCS)

NRCS takes the sum of the elements in each column, forms the
reciprocals of these sums, and then normalizes so that these numbers
add up to unity, e.g. to divide each reciprocal by the sum of the
reciprocals. It is in this form:

1

1
i j n

j i j

a
a=

=
∑

1,2.......j n= 			 (3.10)

'

'
1

i
i n

i i

aW
a=

=
∑

 1,2.......i n= 			 (3.11)

Without looking at the strength and weaknesses of each
methodology that is beyond the scope of this research the thesis
chooses to use Geometric Mean because of its simplicity.

Geometric mean method

The geometric mean is computed as
1

1
n n

i j i jx a== ∏ 				 (3.12)

Where n=number of increments and Element, i ja in the matrix is
an estimate of the relative size of increment i with respect to increment j

This when computed for n rows for a matrix of n n× will yield

Increment I Increment J Increment K Increment L
Increment I 1

ija ika ila

IncrementJ 1
ija

1
jka jla

Increment K 1
ika

1
jka

1
kla

Increment L 1
ila

1
jla

1
jka

1

Table 5 represents the matrix

 1
 1 1

1 1 1

1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 

ij ik il

jk jl
ij

k
ik jk

il jl jk

a a a

a a
a

a
a a

a a a

Table 5: Fully filled matrix where the two conditions have been applied.

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison
Matrices. J Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Volume 7(3)079-088 (2014) - 084
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

vector

1

2

.

.

.

n

x
x

x

x

 
 
 
 

=  
 
 
 
  

 for the matrix in Table 5 we will compute the values of

vector as shown in equation (3.13-3.16)
1
4(1)i ij ik ilx a a a= × × × 			 (3.13)
1
41(1)j ik jl

ij

x a a
a

= × × × 				 (3.14)

1
41 1(1)k kl

ik jk

x a
a a

= × × × 				 (3.15)

1
41 1 1(1)i

il jl jk

x
a a a

= × × × 				 (3.16)

This will yield a priority vector of

i

j

k

l

x
x

x
x
x

 
 
 =  
 
  

 Step 5: Factor in Historical analogy

It is at this point this research work proposes two adaptations to the
methodology to apply to the problem of software sizing in incremental
software development.

1.	 Case where there is only one historical analogy (reference).

2.	 Case where more than two historical analogies exist.

Case 1: One Historical Analogy

This is applicable when only one reference analogy exists i.e. only
one reference historical analogy for a given increment can be found.
The first step in this case is to calculate m (multiplier) as shown

ref

ref

size
m

x
= 					 (3.17)

where ref is the increment which a historical reference exists

The next step is to calculate size of all increments using m according
to equation 3.18

i

j

k

l

size
size
size
size

 
 
 
 
 
  

i

j

k

l

m x
m x

m x
m x
m x

× 
 × = × =  ×
 

×  

 			 (3.18)

Case 2: This occurs where more than two historical analogies exist

When only one historical analogy exists it becomes easy to compute
the respective sizes of all increments. A complication therefore arises
when more than one historical reference exists because any reference
picked will yield different estimate for a given increment .This work
therefore proposes the use of Beta distribution to solve this problem

In order to use Beta distribution we will need to have the following
values

1.	 Optimum estimate (OE)

2.	 Least likely estimate (LLE)

3.	 Expected estimate (ES)

Optimum estimate (OE)=the largest estimate for given increment
generated by a given historical analogy (reference) this essentially
means that the actual size of this increment is expected not to exceed
this estimate.

Least likely estimate=the smallest estimate for given increment
generated by given historical analogy (reference) this implies that the
actual size of this estimate is not expected to go below this estimate.

Expected estimate=average of the estimates for given increments
lying between least likely estimate and most likely estimate it essentially
means that the actual size of the increment has the highest probability
of falling here.

In our earlier example lets now assume that references exist for
all the increments it is therefore required that we calculate multiplier
generated by each reference as shown in equation (3.19-3.22).

For increment I the multiplier generated by its reference is

refi
i

i

size
m

x
= 					 (3.19)

For increment J the multiplier generated by its reference is

refj
j

j

size
m

x
= 					 (3.20)

For increments K the multiplier generated by its reference is

refk
k

k

size
m

x
= 					 (3.21)

For increments L the multiplier generated by its reference is

 refl
l

l

size
m

x
= 					 (3.22)

Each multiplier will yield different estimate for a given increment
and so the challenge will be to know which estimate is the closest to the
actual size of the increment. It is for this reason that this thesis proposes
the use of Beta distribution to solve this problem. How to compute the
estimates are shown in Table 6.

For each increment its size estimate are in its column. For instance

increment I its size estimates are

i i

i j

i k

i l

m x
m x
m x
m x

× 
 × 
 ×
 

×  

optimum estimate is picked

as the highest estimate generated from the column and the lowest
estimate is picked as least likely estimate, the expected estimate is taken
as the average of the estimates lying between optimum estimate and
least likely estimate because most weight tend to lie here. In the table
above let’s take Increment I as our example and picking i im x× as the
optimum estimate, i im x× as the least likely estimate then the expected

Multiplier used Increment I
estimates

Increment J
estimates

Increment K
estimates

Increment L
estimates

Estimate 1
i im x× j im x× k im x× l im x×

Estimate 2 i jm x× j jm x× k jm x× l jm x×

Estimate 3 i km x× j km x× k km x× l km x×

Estimate 4
i lm x× j lm x× k lm x× k lm x×

Table 6: Estimates of each increment.

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison
Matrices. J Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Volume 7(3)079-088 (2014) - 085
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

estimate will be

Expected estimate= sumof remaining estimates lying betweenOE andLLE
number of estimates lying between LLE and OE (3.23)

In this case expected estimate is estimated as follows

 ES =
2

i j i km x m x× + × 				 (3.24)

Where LLE= i im x× and OE= i im x×

Increment I size is therefore estimated as
4

6i
OE ES LLEsize + +

= 				 (3.25)

The size estimates of other increments are computed in the same
way. It is worth noting that the example used here has only four different
estimates for given increment this could be more or less depending
on number of increments to be developed to deliver a system and the
number of Historical analogies (references available). A special case
exist when only two references exist and hence results in two estimates
for given Increment. If this scenario comes up the average of the two
estimates is taken the estimate of the increment.

Step 6: Calculate the total software size

At this point we have size estimates for all the increments and the
challenge therefore is to compute the size of the whole software i.e. total
size denoted here as Ts. Because the total software is being developed
incrementally there is substantial code that is written to glue the new
increment to the already developed increment. The term used for this
in the COCOMO models is breakage, because some of the existing
code and design has to be mended to fit in a new increment. This
research will refer to gluing code as incremental breakage therefore
the projected size of a given increment factoring in the incremental
breakage is estimated according to equation (3.26)

1i i iS size csize −= + 				 (3.26)

Where Si is the increment size with breakage code factored in, sizei
is the initial increment size estimate computed from reference analogy
according to equation (3.18) or beta distribution depending on the
case that arises from step 5. The parameter c reflects the incremental
breakage (or overhead) associated with the previous increment which
is expressed in percentage. Kan asserted that 20% of the added code in
staged and incremental releases of a product goes into changing the
previous code. Cusumano and Selby reported that features may change
by over 30% as a direct result of learning during a single iteration. In
a recent paper the authors argued that the incremental integration
breakage can be expected to lie in a range from 5% to 30%. If c has a
value of 0.15, it corresponds to 15% breakage. In order to simplify the
discussion, it is assumed that all the code of sizei is developed from
scratch i.e. code reuse is not taken into consideration the case of code
reuse is beyond the scope of this research.

Therefore the total system size Ts is computed according to
equation (3.27)

1 1 1
n n

s i i i nT size C size= = −= ∑ + ∑ for 1,2....n n= and 1,2....i n= (3.27)

Considering equation (3.26) equation (3.27) simplifies to

1
n

s i iT S== ∑ 				 (3.28)

Where Ts is the total software size, Si is the net increment size as
defined in equation (3.26)

Compared to the LOC and Function point methodology, the

pairwise framework has the advantage of combining user judgment,
experience and historical analogy to generate size estimates which are
superior. The two methods only use user experience neglecting the
importance of historical analogy which is useful in predicting size of
future or current projects.

Methodology
Data and data collection form

The main focus of the research was to find out if the pairwise
comparison matrix framework produces superior size estimates of
a software compared to the currently popular existing Putman’s Loc
estimation [11] and to prove if there is any direct relationship between
accuracy of the size estimates produced by the model used in the
estimation procedure and the fact that software is delivered on time or
not i.e. if software project meets deadline. In order to accomplish these
objectives the following information was among the data gathered

1.	 Language used to develop a software

2.	 Start and end date of the development of the software

3.	 Number of developers allocated for the software project

4.	 The estimation model used to estimate size

5.	 Size estimate generated by the model

6.	 The actual size of the software upon completion

In order to capture all these and more information two
questionnaires were designed (The choice of the questionnaire was
appropriate because it allowed for the forms to be sent to the project
managers earlier which enabled them to familiarize themselves with
the content before an in person meeting was conducted to guide them
as they filled out the forms. Second questionnaire was in form of a
table to represent unfilled matrix. Experts’ filled the form according
to their judgment capturing relative sizes of different increments that
were developed to deliver the whole software. The use of more than
one expert was vital in checking consistency and have platform for
comparison.

Data source

The source for the project data for this research was from JJpeople
firm which is Software firm that develops wide range of softwares using
JAVA and also serves training ground for young software developers
who are interested in the same language. JJpeople has its offices in
Vancouver, London and its African branch in Nairobi. Use of this firm’s
data conveyed several advantages to this research. First since one of the
main aims of this project is to establish the size of the software the firm
exclusive use of object oriented language (JAVA) made the counting of
lines of codes (LOC) relatively easy. Secondly the firm develops wide
range of application making the data diverse this broadened the level of
interest in the results, as opposed to, say, a database composed of only
one type of application. The firm also indicated that they have used
incremental development in some of their application therefore fitting
well with this research. The willingness of the management to provide
data and advice on the framework was also good for this research.

Data-Collection Procedure and project attributes

For each of the projects, there was an in-person meeting with
the project manager who filled out the forms. There were two main
purposes to this labor intensive approach. The first goal was to discuss
each of the questions to ensure that it is well understood and that each

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison
Matrices. J Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Volume 7(3)079-088 (2014) - 086
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

of the managers would answer consistently. The second purpose was
to impress upon the managers the importance of their participation in
this work.

Projects selected possessed two attributes: First, they were small
to medium in size. The average project size in this study is just under
60 KSLOC. The project selected from the database were also fairly
recent with the oldest developed in 2003. All projects except project
number eight had not used any previous code i.e. there was no code
reuse. Project number eight was just selected because it was exclusively
developed incrementally therefore fitted well with this research

Data Analysis

 The focus of this research was to check how close the size estimates
generated by the pairwise size estimation framework were close to
the actual size. Therefore an error analysis was done to check how the
size estimates from the pairwise estimation framework deviates from
the actual size. The focus therefore was on the degree to which the
pairwise framework model’s estimated size (MMEST matches the actual
size (MMACT). If the models were perfect, then for every project MMEST
= MMACT clearly, this was rarely, if ever, the case. A simple analysis
approach was to look at the difference between MMEST andMMACT. The
problem with this absolute error approach was that the importance
of the size of the error varied with project size. For example, on an
80KLOC, an absolute error of 10KLOC seemed likely to cause serious
project disruption in terms of staffing, whereas the same error on a
1000KLOC project seemed much less of a problem. In light of this,
Boehm and others have recommended a percentage error test, as
follows:

Percentage Error = EST ACT

ACT

MM MM
MM

−
 		 (4.1)

 This test eliminated the problem caused by project size and better
reflected the impact of any error. However, the analysis in this research
concentrated on the pairwise comparison framework estimates’
average performance over the entire set of projects. Errors were of
two types: underestimates, where MMEST<MMACT; and overestimates,
where MMEST>MMACT. Both of these errors can have serious impacts on
projects. Large underestimates will cause the project to be understaffed,
and as the deadline approaches, project management will be tempted
to add new staff members. These results in a Phenomenon known as
Brooks’ law: “Adding manpower to a late software project makes it
later” [10]. Otherwise productive staffs are assigned to teaching the
new team members, and with this, cost and schedule goals slip even
further. Overestimates can also be costly in that staff members, noting
the project slack, become less productive (Parkinson’s Law: “Work
expands to fill the time available for its completion”) or add so-called
“gold plating,” defined as additional systems features that are not
required by the user.

In light of the seriousness of both types of errors, overestimates
and underestimates, Conte et al. have suggested a magnitude of relative
error, or MRE test, as follows:

EST ACT

ACT

MM MMMRE MM
N

−
= 			 (4.2)

Where N is the number of projects used in this research

By means of this test, the two types of errors do not cancel each
other out when an average of multiple errors is taken, and therefore

was used as the test in this research. Graphs were drawn to give good
pictorial comparison between the actual size and the estimates from
pairwise framework using EXCEL

Results and discussion
Project attributes

Projects selected possessed two attributes: First, they were small
to medium in size. The average project size in this study is just under
600 SLOC. The project selected from the database were also fairly
recent with the oldest developed in 2001.All projects except project
number eight had not used any previous code i.e. there was no code
reuse. Project number eight was just selected because it was exclusively
developed incrementally therefore fitted well with this research.

Table 7 below compares the actual size of the softwares and
the estimates generated by pairwise methodologies. The focus of
this research is on the degree to which the pairwise comparison
methodology estimates compare to the actual size.

If the estimates match the actual size perfectly then error margin
was zero clearly this was not the case in any of the projects in Table 7.
The error margin was computed to check the deviation of the pairwise
size estimate methodology from the actual value. Errors were of two
types: underestimates,

Where pairwise estimates<actual size and overestimates, where
pairwise estimates>actual size. Both of these errors can have serious
impacts on projects. Large underestimates has serious impacts on
projects. Large underestimates will cause the project to be understaffed,
and as the deadline approaches, project management will be tempted
to add new staff members. These results in a phenomenon known
as Brook’s law: “Adding manpower to a late software project makes
it later” [11]. Otherwise productive staff is assigned to teaching the
new team members, and with this, cost and schedule goals slip even
further. Overestimates can also be costly in that staff members, noting
the project slack, become less productive (Parkinson’s Law: “Work
expands to fill the time available for its completion”) or add so-called
“gold plating,” defined as additional systems features that are not
required by the user [6]. In light of the seriousness of both types of
errors, overestimates and underestimates, Conte et al. have suggested a
magnitude of relative error, or MRE

Project No Actual size
(KLOC)

Estimate of Pairwise
methodology (KLOC)

Absolute
error margin
(KLOC)

% error MRE

1 42.1 39.64 2.46 4.75 0.0475
2 72.12 69.49 2.63 3.65 0.0365
3 29.52 28.23 1.29 3.01 0.0301
4 42.82 43.11 0.29 0.68 0.0068
5 16.73 17.22 0.49 2.93 0.0293
6 196.22 196.41 0.19 0.097 0.00097
7 67.31 70.10 2.79 4.15 0.0415
8 52.76 49.44 3.32 6.29 0.0629
9 46.92 47.01 0.09 0.19 0.0019
10 37.54 38.09 0.55 1.47 0.0147
11 14.723 13.967 0.756 5.13 0.0513
12 24.666 24.061 0.605 2.453 0.02453
13 30.464 29.000 1.464 4.806 0.04806
14 109.659 109.410 0.249 0.227 0.00227

Mean (X) 55.968 55.36986

Table 7: Showing error margin between actual size and estimates from pairwise
methodology.

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison
Matrices. J Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Volume 7(3)079-088 (2014) - 087
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Actual Estimate Pairwise EstimateMRE
Actual Estimate

−
=

By means of this test, the two types of errors do not cancel each
other out when an average of multiple errors is taken, and therefore
was taken as the test used in this analysis.

This test eliminates the problem caused by project size and better
reflects the impact of any error. From the error margin it was noted that
percentage error ranged 6.29 to 0.097 which corresponds to MRE of
0.063 and 0.00097 respectively. It can also be noted that as the project
get bigger the methodology tend to generate more accurate results.
From the results shown in the table it is clearly depicted that with real
experience from the developer the estimates developed by pairwise
methodology can result in more accurate estimates especially in large
projects which are associated more with massive risk as compared to
relatively smaller risks.

The respective means of actual size and estimates computed from
pairwise comparison methodology were computed as shown in Table
7 and the difference in their mean is 0.59814 representing 1.07% error
in the estimates generated by pairwise methodology. This clearly shows
that the method generates close estimates that can be relied upon by
software managers in making major decisions prior to embarking on
the process of software development. The values of the actual size of
the projects, the size estimates generated by the pairwise comparison
methodology and the error margin is shown in the bar chart below
in order to give a clear impression of how the estimates are close.
As clearly depicted in the bar chart below the estimates generated by
pairwise methodology and the actual size are so close. The error margin
is also shown in the bar chart to give a clear impression of how close the
estimates are to the actual value (Figure 2).

Putman’s methodology of Loc estimation was also used to estimate
the size of the fourteen projects and the results are shown in Table 8.

The error margin was computed to check the deviation of the
estimates generated by the Putman’s methodology from the actual size.
From the error margin it was noted that percentage error ranged 11.64
to 1.20 with 11.64 being the highest error percentage in deviation of the
estimate from the actual size.

In order to show clearly how the estimates deviate from the actual
size a calculation of mean is computed in Table 8 and the difference in
the mean is 2.46907 which represent 4.41%. Error in the deviation is
shown

The values of the actual size of the projects, the size estimates
generated by the Putman’s methodology and the error margin is shown
in the Figure 3 in order to give a clear impression of how the estimates
compare to the actual size.

Conclusion
Compared to Putman’s methodology the pairwise methodology

was superior in generating estimates of size in incremental development
of software. As noted in Table 2 deviation of the mean of estimates
generated by pairwise comparison methodology deviated from the
actual size by 1.07% while those of Putman’s methodology deviated
by 4.41% this therefore confirms the superiority of the pairwise

si
ze

 in
 k

lo
c

PROJECT NO

ACTUAL ESTIMATES COMPARED TO ESTIMATES BY PAIRWISE
METHODOLOGY AND ERROR MARGIN

Actual size

pairwise methodology

Error margin

Figure 2: Bar chart showing comparison of actual size, estimates by pairwise
methodology and error margin.

SI
ZE

 IN
 K

LO
C

PROJECT NO

ACTUAL SIZE COMPARED TO PUTMAN,S METHODOLOGY ESTIMATES AND ERROR
MARGIN

ACTUAL SIZE

PUTMAN,S ESTIMATES

ERROR MARGIN

Figure 3: Bar chart showing comparison of actual size, estimates by pairwise
methodology and error margin.

SI
ZE

 IN
 K

LO
C

PROJECT NO

PUTMAN ERROR MARGIN COMPAIRED TO PAIRWISE METHODOLOGY

PUTMAN ERROR MARGIN

PAIRWISE ERROR MARGIN

Figure 4: Bar chart comparing error margins generated by the two methods.

Project No Actual size
(KLOC)

Estimate of Pairwise
methodology (KLOC)

Absolute
error margin
(KLOC)

% error MRE

1 42.1 45.89 3.79 9.00
2 72.12 76.87 4.75 6.59
3 29.52 32.66 3.14 10.64
4 42.82 45.45 2.63 6.14
5 16.73 16.00 0.73 4.36
6 196.22 200.43 4.21 2.15
7 67.31 69.04 1.73 2.57
8 52.76 50.99 1.77 3.35
9 46.92 50.01 3.09 6.59
10 37.54 38.99 1.45 3.86
11 14.723 14.900 0.177 1.20
12 24.666 27.000 2.334 9.46
13 30.464 34.010 3.546 11.64
14 109.659 115.879 6.22 5.67

Mean (X) 55.968 58.43707

Table 8: Comparing actual size versus estimates from Putman’s methodology.

Citation: Ochieng P, Mwangi W (2014) Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison
Matrices. J Comput Sci Syst Biol 7: 079-088. doi:10.4172/jcsb.1000141

Volume 7(3)079-088 (2014) - 088
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

methodology. The Table 9 and bar chart Figure 4 shows the pairwise
error margin as compared to those of Putman’s methodology

Acknowledgment

The authors would like to thank Dr Stephen Kimani and Calvins Otieno for their
contribution to the ideas and proofreading of this paper.

References

1. Dalcher D (1994) Falling down is part of growing up; the study of failure and the
software engineering community. Software Engineering Education 750: 489-
496.

2.	 Lambert J (1986) A Software Sizing Model. Journal of Parametrics 6: 75-87.

3. Standish Group (2000) Chaos 2000 (Standish, Dennis, Mass, 2000)

4. Albrecht AJ, Gaffney (1983) Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transactions
on Software Engineering 9: 639-648.

5. Benediktsson O, Dalcher D (2003) Effort estimation in incremental software
development. IEE Proceedings Software 150: 351–357.

6. Bozoki G (1986) Software Size Estimator (SSE). Centre National d’Etudes
Spatiales (CNES), Toulouse, France, June 1986.

7. Saaty T (1977) A Scaling method for Priorities in a Hierarchical Structure. J
Math Psychology 15: 234-281.

8. Saaty T (1980) The Analytic Hierarchy Process, McGraw-Hill, New York, NY:
1980.

9. Zahedi F (1986)The Analytic Hierarchy Process-A Survey of the Method and its
Application. Interfaces, 16: 96-108.

10.	Miranda E (2001) Improving Subjective Estimates Using Paired Comparisons.
Proceedings of the 10th International Symposium on Software Metrics
(METRICS’04) 18: 87-91.

11.	Danny Ho, Luizfernandocapretz, Justin wong (2008) Calibrating function point
backfiring conversion ratios using neuro-fuzzy technique. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 16.

Project No Error margin (Putman’s
method)

Error margin (pairwise
method)

1 3.79 2.46
2 4.75 2.63
3 3.14 1.29
4 2.63 0.29
5 0.73 0.49
6 4.21 0.19
7 1.73 2.79
8 1.77 3.32
9 3.09 0.09
10 1.45 0.55
11 0.177 0.756
12 2.334 0.605
13 3.546 1.464
14 6.22 0.249

Table 9: Comparison of error margins.

http://link.springer.com/chapter/10.1007%2FBFb0017636
http://link.springer.com/chapter/10.1007%2FBFb0017636
http://link.springer.com/chapter/10.1007%2FBFb0017636
http://www.tandfonline.com/doi/abs/10.1080/10157891.1986.10462703?journalCode=uzpa20#.U06EE4Y7_3A
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1703110&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F35937%2F01703110.pdf%3Farnumber%3D1703110
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1703110&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F35937%2F01703110.pdf%3Farnumber%3D1703110
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1703110&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F35937%2F01703110.pdf%3Farnumber%3D1703110
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1260189&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5658%2F28165%2F01260189.pdf%3Farnumber%3D1260189
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1260189&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5658%2F28165%2F01260189.pdf%3Farnumber%3D1260189
http://www.sciencedirect.com/science/article/pii/0022249677900335
http://www.sciencedirect.com/science/article/pii/0022249677900335
http://pubsonline.informs.org/doi/abs/10.1287/inte.16.4.96?journalCode=inte
http://pubsonline.informs.org/doi/abs/10.1287/inte.16.4.96?journalCode=inte
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=903173&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D903173
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=903173&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D903173
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=903173&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D903173
http://www.worldscientific.com/doi/abs/10.1142/S0218488508005650
http://www.worldscientific.com/doi/abs/10.1142/S0218488508005650
http://www.worldscientific.com/doi/abs/10.1142/S0218488508005650

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Literature Review
	Lawrence H. Putnam LOC Estimation
	Developer opinion and previous project experience

	Function Point Analysis
	Pairwise comparison matrix size estimation framework
	Eigen value methodology
	Normalization of the Row Sum (NRS)
	Arithmetic Mean of Normalized Columns (AMNC)
	Normalization of Reciprocals of Column Sum (NRCS)
	Geometric mean method

	Methodology
	Data and data collection form
	Data source
	Data-Collection Procedure and project attributes
	Data Analysis

	Results and discussion
	Project attributes

	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	References

