ISSN : 2153-2435
Pharmaceutica Analytica Acta
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Spectroscopic Characterization of Chloramphenicol and Tetracycline: An Impact of Biofield Treatment

Mahendra Kumar Trivedi1, Shrikant Patil1, Harish Shettigar1, Khemraj Bairwa2 and Snehasis Jana2*
1Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA
2Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd., Bhopal- 462026, Madhya Pradesh, India
Corresponding Author : Snehasis Jana
Trivedi Science Research Laboratory Pvt. Ltd.
Hall-A, Chinar Mega Mall
Chinar Fortune City, Hoshangabad Rd.
Bhopal- 462026, Madhya Pradesh, India
Tel: +91-755-6660006
Received: June 10, 2015 Accepted: July 21, 2015 Published: July 24, 2015
Citation: Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S, et al. (2015) Spectroscopic Characterization of Chloramphenicol and Tetracycline: an Impact of Biofield. Pharm Anal Acta 6:395. doi:10.4172/2153-2435.1000395
Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at Pubmed, Scholar Google

Visit for more related articles at Pharmaceutica Analytica Acta


Objective: Chloramphenicol and tetracycline are broad-spectrum antibiotics and widely used against variety of microbial infections. Nowadays, several microbes have acquired resistance to chloramphenicol and tetracycline. The present study was aimed to evaluate the impact of biofield treatment for spectroscopic characterization of chloramphenicol and tetracycline using FT-IR and UV-Vis spectroscopy. Methods: The study was performed in two groups (control and treatment) of each antibiotic. The control groups remained as untreated, and biofield treatment was given to treatment groups. Results: FT-IR spectrum of treated chloramphenicol exhibited the decrease in wavenumber of NO2 from 1521 cm-1 to 1512 cm-1 and increase in wavenumber of C=O from 1681 cm-1 to 1694 cm-1 in acylamino group. It may be due to increase of conjugation effect in NO2 group, and increased force constant of C=O bond. As a result, stability of both NO2 and C=O groups might be increased in treated sample as compared to control. FT-IR spectrum of treated tetracycline showed the downstream shifting of aromatic C-H stretching from 3085-3024 cm-1 to 3064-3003 cm-1 and C=C stretching from 1648-1582 cm-1 to 1622-1569 cm-1 and up shifting of C-N stretching from 965 cm-1 to 995 cm-1. It may be due to enhanced conjugation effect in tetracycline, and increased force constant of C-N (CH3) bond of tetracycline as compared to control. The results indicated the enhanced stability of treated tetracycline as compared to control. UV-Vis spectra of biofield treated chloramphenicol and tetracycline showed the similar lambda max (λmax) to their respective control. It revealed that the chromophore groups of both antibiotics remained same as control after the biofield treatment. Conclusion: Based on FT-IR spectroscopic data, it is speculated that due to increase in bond strength and conjugatio

Chloramphenicol; Tetracycline; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy
Chloramphenicol and tetracycline are structurally dissimilar broadspectrum antibiotics that commonly act by inhibiting the protein synthesis in microbes. These are extensively used in several microbial infections including Gram-negative, Gram-positive bacteria, chlamydiae, and rickettsiae [1-3]. Chloramphenicol reversibly binds to 50S ribosomal subunit of microbes and prevents the binding of aminoacyl tRNA to 50S ribosomal subunit. Thus, it inhibits protein synthesis in bacteria, which is essential for bacterial growth [3,4]. Despite of its broad spectrum antimicrobial activities, it also has some adverse effects such as gray baby syndrome, aplastic anemia, and bone marrow depression [3,5]. Nowadays, chloramphenicol is not much effective due to development of resistance in the variety of microbes. Microbial resistances against chloramphenicol occur by several mechanisms like enzymatic (acetyltransferases and phosphotransferases) inactivation; decreasing the membrane permeability, mutation/modification in target site, and presence of efflux pumps [6]. Tetracycline exerts both bacteriostatic and bactericidal mode of action against the majority of aerobic, anaerobic, Gram-negative, and Grampositive bacteria. It binds with 30S ribosomal subunit of microbes and block the binding of activated aminoacyl-tRNA to the A site of ribosome. Thus, it blocks the insertion of new amino acids to the nascent peptide chain [2,7,8]. Microbes acquire resistance to tetracycline by evolving the efflux pump and/or by ribosomal protection protein [9,10].
Antimicrobial resistance is now conceiving as global threat; as a result need of new antimicrobial drugs is constantly increasing.
Therefore, global scientific community has attempted to discover a concept to overcome the microbial resistance i.e. reintroduction of previously used antibiotics active against multi drug resistant (MDR) bacteria. Therefore, several antimicrobial agents like chloramphenicol, tetracycline, etc are reemerging after some modifications as valuable alternatives for the treatment of difficult-to-treat microbial infections [11,12].
Stability of drug is of great importance for its efficacy. In addition, drug degradation may lead to byproducts formation. Abachi et al. showed that stability of chloramphenicol was independent of pH between 4 to 6.2, and it was susceptible to hydrolysis in aqueous media [13]. Lv et al. suggested that chloramphenicol was not stable in suspension form [14]. Liang et al evaluated the stability of tetracycline in methanol solution using UV–Visible spectroscopy, HPLC, and TLC methods. The report showed that tetracycline decomposed quickly with the influence of light and atmospheric oxygen, and formed several degradation products [15,16]. Therefore, an alternative approach is needed that can increase the shelf life of poorly stable drug.
Recently an alternative approach, biofield treatment is recognized to change the various physical and structural properties at the atomic level of various living and non-living things. It is well established that electrical current coexist along with the magnetic field inside the human body in the form of vibratory energy particles like ions, protons, and electrons [16,17]. Willem Einthoven discovered an electrocardiography in 1924 to measure the human biofield. Later on, Harold Saton Burr gave the hypothesis that every dynamic process in the human body had an electrical significance. Recently, it confirmed that all the electrical process happening in human body generates magnetic field [18]. It can be observed using some medical technologies such as electrocardiography, electromyography, and electroencephalogram. The electromagnetic field of the human body is known as biofield and energy linked with this field is called biofield energy [19-21]. Thus, a human has the ability to harness the energy from environment or universe and can transmit into any living or nonliving object around this globe. The object(s) always receive the energy and responding into useful way; this process is known as biofield treatment (The Trivedi Effect®). Mr. Trivedi’s biofield treatment has altered the physicochemical and structural properties of metals and ceramics [22-24]. The growth and anatomical characteristics of medicinal plant also changed after biofield treatment [25]. The biofield treatment enhanced the yield and quality of agriculture product [26]. Moreover, the changes in antimicrobial susceptibility and biotype number of pathogenic microbe have been reported after biofield treatment [27].
Conceiving the concept of antimicrobial reuses, the present study was aimed to evaluate the impact of biofield treatment on spectral properties of two antibiotics i.e. chloramphenicol and tetracycline.
Materials and Methods
Study design
The chloramphenicol and tetracycline (Figure 1) samples were procured from Sigma-Aldrich, MA, USA; and each antibiotic was divided into two parts: control and treatment. The control samples remained as untreated, and treatment samples were handed over in sealed pack to Mr. Trivedi for biofield treatment under laboratory condition. Mr. Trivedi provided this treatment through his energy transmission process to the treatment groups without touching the objects. After that, the control and treated samples of each antibiotic were analyzed using Fourier transform infrared (FT-IR) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy.
FT-IR spectroscopic characterization
FT-IR spectra were recorded on Shimadzu’s Fourier transform infrared spectrometer (Japan) with frequency range of 4000-500 cm-1. The FT-IR spectral analysis of chloramphenicol and tetracycline were carried out to evaluate the impact of biofield treatment at atomic level like bond strength, stability, and rigidity of chemical structure [28].
UV-Vis spectroscopic analysis
UV-Vis spectra of chloramphenicol and tetracycline were acquired on a Shimadzu UV-2400 PC series spectrophotometer with 1 cm quartz cell and a slit width of 2.0 nm. The analysis was carried out at wavelength range of 200-400 nm. UV-Vis spectroscopic analysis was performed to evaluate the effect of biofield treatment on structural property of tested antibiotics (chloramphenicol and tetracycline) [28].
Results and Discussion
FT-IR spectroscopic analysis
FT-IR spectra of control and treated chloramphenicol are shown in Figure 2. FT-IR spectrum of control sample showed absorption peaks at 3352-3246 cm-1 that were assigned to O-H and N-H stretching, respectively. IR peaks at 3081 cm-1 were assigned to aromatic C-H stretching. Vibrational peaks at 1681 and 1559 cm-1 were assigned to C=O and C=C stretching, respectively. Further, the NO2 and C-Cl stretching were observed at 1521 cm-1 and 662 cm-1, respectively; and N-H bending was appeared at 1518 cm-1. The FT-IR data of control chloramphenicol was well supported by the literature data [29].
The FT-IR spectrum of treated sample of chloramphenicol showed IR absorption peaks for O-H and N-H stretching at 3243 cm-1 and aromatic C-H stretching was appeared at 3079 cm-1. The vibrational peak of carbonyl group (C=O) and C=C stretching were attribute to IR peaks at 1694 and 1560 cm-1, respectively. Additionally, NO2 stretching and N-H bending peaks were appeared at 1512 and 1510 cm- 1, respectively; and C-Cl stretching was appeared at 667 cm-1.
Altogether, the result suggested that C-H and C=C stretching peaks of aromatic ring were observed in similar frequency region in both control and treated sample of chloramphenicol. It indicated that stability and rigidity of phenyl ring was retained in treated sample as like to control. The vibrational peaks for C=O stretching (acylamino group) was observed towards higher frequency region i.e. from 1681 to 1694 cm-1 that may be due to an increase in force constant of C=O group in treated chloramphenicol. Further, FT-IR spectra of treated chloramphenicol showed decrease in wavenumbers of NO2 i.e. from 1521 to 1512 cm-1. It might be occurred due to increase of conjugation effect between NO2 group and phenyl ring [30]. Force constant is directly proportional to bond strength [28]. As the force constant of C=O was increased due to biofield treatment, the stability of acylamino moiety in treated chloramphenicol should also be increased. Additionally, the conjugation effect between NO2 group and phenyl ring may lead to increase in chemical stability of treated chloramphenicol as compared to control.
The FT-IR spectra of control and treated samples of tetracycline are shown in Figure 3. FT-IR spectrum of control sample showed the absorption peaks for N-H and O-H stretching at 3341-3329 cm-1 and aromatic C-H stretching at 3085-3024 cm-1. The vibrational peaks at 2995-2863 cm-1 and 1648-1582 cm-1 were assigned to CH3 stretching and C=C stretching, respectively. Aromatic C-H bending was appeared at 1458 cm-1 and CH3 bending was appeared at 1357 cm-1. The aromatic in plane and out plane deformation peaks were appeared at 1247-1000 cm-1 and 567-501 cm-1, respectively. Vibrational peak at 965 cm-1 was assigned to C-N stretching. The FT-IR data of control sample was well supported by reported data [31].
The FT-IR spectra of treated tetracycline showed the vibrational peaks at 3342-3325 cm-1 that were attributed to N-H and O-H stretching. Vibrational peaks at 3064-3003 cm-1 and 2955-2835 cm-1 were assigned to C-H and CH3 (methyl) stretching, respectively. C=C stretching peaks were appeared at 1622-1569 cm-1. Bending vibrational peaks for C-H and CH3 groups were appeared at 1454 and 1357 cm-1, respectively. Vibrational peaks at 1247-1000 cm-1, and 995 cm-1 were assigned to C-H in plane deformation and C-N stretching, respectively. The out plane ring deformation peaks were appeared 567-501 cm-1.
The FT-IR data of control and treated tetracycline showed that N-H and O-H stretching peaks are observed in the similar frequency region in both samples. This suggests no changes in the amide and hydroxyl group of treated tetracycline as compared to control. IR absorption peaks for C-H (aromatic) stretching were shifted to lower frequency i.e. from 3085-3024 cm-1 to 3064-3003 cm-1 and likely the CH3 stretching was shifted to lower frequency i.e. from 2995-2863 cm-1 to 2955-2835 cm-1. IR absorption peak for C=C stretching was also appeared at lower frequency region i.e. form 1648-1582 cm-1 to 1622-1569 cm-1 in treated sample as compared to control. It is well known that resonance or conjugation of C=C double bond or carbonyl group provides the more single bond character to C=C bond that lowers the force constant of respective bond [28,30]. Further, resonance and/or conjugation effect also provide the stability to chemical compound. Therefore, it is speculated that biofield treated tetracycline might be more chemically stable due to enhanced conjugation effect in C and D ring, with respect to control. This could be correlated to enhancement in stability of treated tetracycline with respect of control. The C-N stretching peak in treated tetracycline was observed at higher wavenumber than control (i.e. from 965 to 995 cm-1). It could be due to increased bond strength of C-N (CH3) group that might be increased stability of treated tetracycline as compared to control.
UV-Vis spectroscopy
UV spectra of control and treated samples of chloramphenicol are shown in Figure 4. It showed no significant change in the lambda max (λmax) of treated sample (273.8 nm) as compared to control (272.2 nm), which indicated no changes in chromophore group of treated chloramphenicol with respect to control. UV spectra of control and treated sample of tetracycline are shown in Figure 5. Both spectra showed three absorption peaks at 362.60, 268.80, and 220.60 nm in control sample and 362.60, 268.80, and 221 nm in treated sample, which indicated similar pattern of UV absorbance in both the samples. This suggested no changes in chromophore group of treated tetracycline with respect to control. Overall, the UV spectra of both the antibiotics showed no significant changes in λmax as compared to control. Based on this, it could be concluded functional groups or their position did not altered in treated sample after biofield treatment. To the best of our knowledge, this is the first report showing an impact of biofield treatment on spectral properties (force constant, dipole moment, and bond strength) of chloramphenicol and tetracycline as compared to control.
Altogether, the FT-IR data showed an alteration in the wavenumber of some functional groups like C=O and NO2 in chloramphenicol and C=C and C-N (CH3) in tetracycline with respect to control groups. This could be observed due to some alteration at the atomic level of both antibiotics by the influence of biofield treatment. The results of present study suggest the impact on force constant, bond strength and dipole moment of both antibiotics that may be alter the chemical stability of biofield treatment as compared to control.
The authors would like to acknowledge the whole team of MGV Pharmacy College, Nashik for providing the instrumentalfacility. Authors would also like to thank Trivedi science, Trivedi master wellness and Trivedi testimonials for their support during the work.

Select your language of interest to view the total content in your interested language
Share This Article
Relevant Topics
Disc Advances in pharmaceutical analytical methods
Disc Air analysis
Disc Analytical Biochemistry Techniques
Disc Analytical Chemistry
Disc Analytical Chromatography
Disc Analytical Techniques
Disc Antigen – Antibody Reaction
Disc Bioanalysis
Disc Bioanalytical Techniques
Disc Biomedical Chromatography
Disc Capillary Electrochromatography
Disc Capillary Electrophoresis
Disc Chemical analysis
Disc Chemometric Analysis
Disc Chromatography
Disc Competitive analysis of drugs
Disc Differential Scanning Calorimetry
Disc Drug Delivery using Nanotechnology
Disc Drug Designing
Disc Drug Resistance
Disc Drug analysis
Disc Electrophoresis
Disc Extraction Chromatography
Disc Filtration
Disc Flow Injection Analysis
Disc Fragment Based Drug Design
Disc GC-MS
Disc Gravimetric Analysis
Disc Heat Shock Proteins
Disc Heterocyclic Compounds
Disc Immuno Affinity Chromatography
Disc In Silico Methods
Disc Infrared Spectroscopy
Disc Ion-exchange chromatography
Disc LC-MS
Disc LC-MS principles
Disc Method Validation
Disc Molecular Modeling
Disc Nanomedicals
Disc Peptidomimetic
Disc Pharmaceutical Analytical Techniques
Disc Pharmaceutical Sciences
Disc Pharmaceutical analysis
Disc Pharmaceutical analytical market
Disc Pharmaceutical formulation
Disc Pharmaceutical technology
Disc Pharmaceutics
Disc Product analysis and marketing
Disc Protease Substrate/Inhibitor
Disc Qualitative Analysis
Disc Quality assurance in pharmaceutical analysis
Disc Receptor Agonist/ Antagonist
Disc Separation Techniques
Disc Spectrometry
Disc Spectrophotometry
Disc Spectroscopy
Disc Structure Based Drug Design
Disc Super Critical Fluid Chromatography
Disc Synthetic Organic Chemistry
Disc Validation
Disc screening and Drug Design
Recommended Journals
Disc Journal of Diagnostic Techniques and Biomedical Analysis
Disc Journal of Pharmaceutical Analysis
Disc Pharmaceutical Analytical Chemistry: Open Access
Disc Journal of Chromatography & Separation Techniques
Disc Journal of Analytical & Bioanalytical Techniques
Disc Pharmaceutics Research Journal
Disc Drug Designing Journal
  View More»
Recommended Conferences
Disc World Congress on Chromatography
September 21-23, 2016 Amsterdam, Netherlands
Disc World Chromatography Congress
September 29-Oct 1, 2016, Miami, USA
Disc 3rd Asia Pacific Mass Spectrometry Congress
October 10-12, 2016 Kuala Lumpur, Malaysia
Disc 2nd Conference on Parenterals
October 24-26, 2016 Istanbul, Turkey
Disc World Pharma Congress
Nov 07-Nov 09, 2016 Las Vegas, USA
Disc International Pharmaceutical Method Development and Validation Conference
November 24-25, 2016 Dubai, UAE
Article Tools
Disc Export citation
Disc Share/Blog this article
Article usage
  Total views: 11820
  [From(publication date):
July-2015 - May 26, 2016]
  Breakdown by view type
  HTML page views : 8086
  PDF downloads :3734

Post your comment

captcha   Reload  Can't read the image? click here to refresh

OMICS International Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
OMICS International Conferences 2016-17
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2016 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version