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Introduction
One of the main goals of systems biology consists in providing 

an integrative description of living systems and organisms by using 
simulation of complex and interconnected mathematical models of 
metabolic networks and signaling pathways [1,2]. System Biology 
Markup Language (SBML) [3] constitutes a standard for modeling 
systems biology and uses an XML-based language. SBML inherently 
allows developing synaptic receptor models at the molecular level 
using kinetic parameters as well as integrating a variety of mechanisms, 
which modulate the physical and functional properties of receptors 
(i.e., rise time, decay time, amplitude, etc.). Numerical tools are used to 
simulate these synaptic receptor models.

Rhenovia Pharma has developed a simulation platform 
(RHENOMS™) for hippocampal glutamatergic synapses and its 
integration into complex neuronal networks by combining kinetic 
receptor models and models of other reactions taking place within 
synapses [4]. This platform has been used to perform in silico 
experiments [5] to better understand the dynamics of synaptic 
transmission under physiological and pathological conditions. In 
order to calibrate these models, it is necessary to optimize the model 
parameters such that simulated results reproduce selected experimental 
results. In this optimization phase, the modeler iteratively modifies 
model parameters until simulated results match experimental ones 

(Figure 1). In addition, in order to perform in silico simulations under 
normal and pathological conditions to test the effects of drugs for 
neurodegenerative or other central nervous system (CNS) diseases, both 
‘physiological’ and ‘pathological’ synaptic receptor models have to be 
developed. To characterize the behavior of those ‘control’ and ‘disease-
like’ models, users go through an initial parameter optimization phase, 
which is very important to ensure that the model displays the desired 
behavior under both control and pathological conditions. However, 
the chosen parameter values may lead to an unstable model. To address 
this issue, stability conditions could need to be investigated from the 
mathematical structure of the kinetic model.

From a modeling point of view, biological kinetic models [6-8], 
particularly synaptic receptor models [9-11], represent states and 
transition probabilities between the different states (i.e., open or 
desensitized probability states). The resulting model, called Markov 
kinetic model, is often affine in control, which is a particular form of 
nonlinearity. These kinds of models are known as bilinear systems and 
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is provided for the operating point no constraints are available to 
guarantee the stability during the optimization step.

Studying the kinetic model to find the proof of stability is not 
enough in this presented model tuning process. During the model 
tuning process, users modify the model associations and dissociations 
parameters (with an optimization algorithm). The problematic 
encountered is that some parameter values and simulation conditions 
may lead to model instability resulting in (i) lack of convergence of the 
simulation runs, (ii) erroneous solutions of the sets of ODE used to solve 
the model equations, and (iii) prohibitively long simulation durations. 
This instability may jeopardize model simulation and consequently 
hinder the success of the parameter optimization phase. These issues 
led us to ask whether it could be possible to identify constraints on 
parameter values, which could guarantee model stability. Finding these 
stability constraints is the primary objective of this study in order to 
guarantee the optimization step success.

In this manuscript, the stability concept and its application for 
linear and bilinear models are presented in Section 2. Then, the 
proposed approach based on the Routh-Hurwitz stability criterion 
is presented. The RH criterion efficacy is demonstrated with two 
examples, a textbook model and the GABAA receptor model. Finally, 
discussion about the results obtained with the RH criterion as well as 
their limitations and elaborates on the perspectives of this work.

Model Stability
To represent the notions of stability and equilibrium point 

one must first define the system of interest. Let’s consider a process 
represented by the following nonlinear equation:

( ) ( ) ( )( ),x t f x t u t= 				                    (2)

where ( ) nx t ∈ is the system state vector and ( ) mu t ∈ the input vector. 
The vector xe is defined as the equilibrium point if:

( )( ) ,   0n
e ex such as f x t∃ ∈ = 			                  (3)

with ( ) nx t ∈  is a constant t∀ . In other words, equation (2) needs to 
converge to the constant ex .

Definitions 

The equilibrium point ex  is said stable if for every neighborhood 
 Vε  of ex , there is a neighborhood ex  of ex such that for every initial 
state 0( )x t of ( )x t , the ( )x t trajectory exists and belongs to Vε for every 

0t t≥ :

( ) ( )0 00, 0,   , , e esuchthat x t x t t x t xε α α ε∀ > ∃ > − < ⇒∀ > − <                 (4)

The equilibrium point Vα is said attractive if there is a neighborhood 
Vα of ex , such that for every initial state 0( )x t of Vα , the ( )x t state 
trajectory exists and tends to ex  values:

( )0 ,  lim et
t t suchthat x t x

→∞
∀ ≥ =  			                    (5)

If an equilibrium point ex  is attractive and stable, then it is said to 
be asymptotically stable.

Otherwise, the equilibrium point ex  is considered to be unstable 
[24].

Stability Studies for Linear System

The equilibrium point ex  of a nonlinear system ( )
0

lim et t
x t x

→
= is 

said attractive (or stable) if ( )
0

lim et t
x t x

→
=  [24]. In other words, a system 

is said to be stable if it returns to its steady state after a disturbance by an 

are commonly modeled by an Ordinary Differential Equations (ODE) 
[12-14] as follows:

( ) ( )
1

( ) ( )
m

i i
i

x t Ax t B u t x t
=

= ∑  			                 (1) 

where ( ) nu t ∈ is the system state, ( ) nu t ∈ are the external inputs 
with ( ) iu t ∈  the ith input i=1,2,…,m) and n m

iB ×∈ its associated 
real constant matrix, and n nA ×∈ is a real constant matrix. Notice 
that the analytical solution of this system cannot be often obtained due 
to the complexity and nonlinearities of the system. However under 
some conditions, stability conditions are proposed, as mentioned by 
Chen et al. [15]. Most studies consider time-invariant continuous 
bilinear systems with linear feedback [16-18]. Almost all of these 
suggest studying stability by finding a sufficient condition for the 
existence of a feedback control, such that the resulting closed-loop 
system is asymptotically stable.

A large number of publications study the stability of bilinear 
systems with the Lyapunov functions [19,20]. This energy based 
method developed by Lyapunov in 1892 [21], consists in finding 
sufficient conditions for stability of nonlinear systems. The sufficient 
conditions require the existence of Lyapunov functions ( )u t for the 
system or the existence of some negative (or positive) definite matrices, 
such that the feedback input ( )u t depends on those matrices as shown 
in ref. [22,23]. This method avoids the explicit solution of the ODE and 
can then be applied to a large class of nonlinear systems. This method 
could represent an interesting way to solve the problem investigated 
in this paper. However, for each modification of a given parameter, 
another function ( )V x  needs to be determined during the optimization 
phase, increasing the computation-time. In order to reduce the 
mathematical complexity of the investigated model, an approximation 
(i.e., a linearization) around an operating point can be proposed 
considering the system input ( )u t as a piecewise constant signal. In this 
way the nonlinear model is transformed into a linear system and some 
well-known stability conditions can be easily employed based on the 
computation of the eigenvalues of the dynamic matrix.

Among them, Routh-Hurwitz (RH) stability criterion is a 
mathematical test, which provides a necessary and sufficient condition 
to characterize the stability of a linear system without computing 
explicitly the solution of the eigenvalues (roots), thus reducing 
computing time. This test is well adapted to biological bilinear systems, 
which are considered here because they may become extremely 
complex, consequently making it difficult (computationally speaking) 
and sometimes even impossible to compute the eigenvalues (roots). In 
addition, it is also important to note that even if the proof of stability 

Development of a model generally requires three steps. The first step, the 
modeling, generates an initial, not-validated model. To obtain a physiologic or 
pathologic model, users modify the model parameters during the optimization 
step. The optimization step is run until desired physiological or pathological 
model is reached. The third step, or the study step, represents the application 
stage of the model, when new predictions can be generated by the model.
Figure 1: Schematic representation of the modeling and simulation process.
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column shows the existence of a new positive real part for the roots 
of the system studied. The appearance of a zero in the pivot column 
indicates the existence of a pure imaginary root [25,26]. In that case, 
the studied system corresponds to an oscillating system also called 
pseudo-stable.

The Routh-Hurwitz criterion presented in this section represents a 
method of determining the location of the roots of a polynomial with 
constant real coefficients with respect to the left and right halves of the 
complex plane  (also called s–plane), without actually solving for the 
roots.

Stability Constraints for a Kinetic Model
The contribution work, presented in this section, is inspired from 

RH criterion to find stability constraints of a linearized kinetic model. 
To extract constraints guarantying the kinetic model stability, the 
following algorithm is proposed:

Algorithm
1 Linearize the system (1) around an operating point considering 

the input as a piecewise constant
2 Compute the characteristic polynomial (6) of the linearized system
3 Construct the RH table with equation (6) and rules (7)
4 The first column (pivot column) of the table contains the 

constraints needed to guarantee the model stability

The kinetic model will be stable if all constraints provided by the 
RH criterion have the same sign (positive or negative). Remark that 
the constraints will provide only a local stability (around the chosen 
operating point) due to the linearization. The following examples 
illustrate the proposed algorithm for designing stability constraints.

Textbook example

To illustrate the RH criterion for finding stability constraints on 
kinetic model parameters, a very basic kinetic model as shown in Figure 
3 is used. This kinetic scheme represents a textbook case composed of 
three states 1 2 3( ), andx x x , four parameters 21 43, , )(k k k d kan and 
one input ( )u . This simplified model is represented by a set of ODE, 
which can be written as [27,28]:

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 2 1 1

2 1 1 4 3 2 3 2

3 3 2 4 3

 

 

x k x t k x t u t
x k x t u t k x t k k x t

x k x t k x t

= −
= + − +

= +







 	             (8)

with k1=0.7, k2=0.2 and k3=0.4

outside element. Notice however that establishing stability conditions 
for nonlinear systems is an arduous task. Often, a linear approximation 
of the nonlinear system is employed in order to verify local stability 
of the nonlinear system around an operating point. In this paper, the 
kinetic model input is considered as a piecewise constant signal, which 
amounts to linearizing the system around an operating point.

A linear system (where A is the dynamic matrix), for which the 
analytical solution is ( (

0 0( ) ( ) ))Ax t x t e t t= − , is considered stable if 
A(t-t0) is negative. More explicitly, for a linear system, the real part of 
the eigenvalues ofA ( ( 0λℜ < , where λ  represents the eigenvalues), 
needs to be negative to ensure stability.

It can be recalled here that finding the eigenvalues of the matrix A, 
with ( )det I Aλ − , is equivalent to finding the roots of the polynomial 
characteristics ( )P λ defined by:

( ) 1 1
1 1 0

n n
n np a a a aλ λ λ λ−

−= + + + 		                (6)

Where λ represents the A matrix eigenvalues and ai the polynomial 
characteristic constant coefficients. The characteristic polynomial 
degree will be the same as the kinetic model size, i.e., the number of the 
states. Based on the complexity of the linear system, computation of the 
roots of the polynomial characteristics can be difficult or impossible. In 
the following section, an interesting stability test is presented to avoid 
the explicit computation of the roots.

Routh-Hutwitz Criterion

In the field of automatic control, the Routh-Hurwitz stability 
criterion is a mathematical test, which provides a necessary and 
sufficient condition to characterize the stability of a linear system 
without computing explicitly the roots of (6). The Routh-Hurwitz test 
is a recursive algorithm to determine if all the roots of (6) have negative 
real parts [25]. The Hurwitz Matrix (or Table) helps to conclude on 
the stability of the linear system: the system is said stable if and only 
if the determinants of its principal submatrices are all positive [25]. 
The crux of the Routh-Hurwitz criterion [25] lies in the roots λ of the 
characteristic polynomial of a linear system. These roots with negative 
real parts represent the stable solutions ( )te λ of the system (bounded 
solutions). The exact calculation of the roots is then replaced by the 
Routh-Hurwitz criterion whether the roots are positive or negative. 
Thus, the test provides a means to determine whether the steady 
state point of a linear system is stable avoiding to directly solving the 
differential equations that characterize it.

The first two lines of the RH table are filled in column, with the 
coefficients of the characteristic polynomial (6). The first row contains 
the coefficients of the terms in 2n kλ − ordered by decreasing n power, 
while the second row contains the coefficients of the terms in 1 2n kλ − −  
and ends according to n parity.

Figure 2 illustrates the Routh-Hurwitz table with the polynomial 
represented by equation (6). The following rows of the Routh-Hurwitz 
table are built according to the following rules:

2
2

1 3 1 11 1

1 1 , n n n n i
n n i

n n n n in n

a a a a
b b

a a a aa a
− −

− −
− − − − −− −

− −
= =                               (7)

Note that an empty cell is considered equal to zero, if necessary. 
The calculation of the various cells of the table continues until the first 
column is completed. The first column of this table is called the pivot 
column. The Routh-Hurwitz criterion helps concluding whether a 
system is asymptotically stable when all elements of the pivot column 
have the same sign. Each change of sign in the elements of the pivot 

The first column is called the pivots column.
Figure 2: Representation of the Routh-Hurwitz table for a characteristic 
polynomial of degreen.
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The bilinearity of this model is given by the term ( )1 1 ( )k x t u t . 
However, by considering the input ( ) 0u t u= of our simplified model 
as a piecewise constant, its equation becomes linear:

( ) ( )x t Ax t=  					                    (9)

with ( )
1 0 2

1 0 2 3 4

3 4

0

0

k u k
A k u k k k

k k

− 
 = − + 
 − 

The characteristic polynomial associated with this linear system 
around an operating point, computed with ( )det I Aλ − , of equation (9) 
is:

( ) 3 2
3 2 1 0Ap a a a aλ λ λ λ= + + +  			     (10)

The Routh-Hurwitz table of the simplified model is built with 
the na  parameters of equation (10) and is presented in Table 1 

with 3 1,a = 2 1 0 2 3 4a k u k k k= + + + , ( )1 1 0 3 4 2 4a k u k k k k= + + , 0 0a = , 

( )1 3 0 2 1 1 0
2

1  0 ,b a a a a a b
a

= − − = =  and ( )0 2 0 1 0
1

1 0c a b b a
b

= − − = .

With a zero 0( )c on the last line of the pivot column, the simple 
kinetic model used in this example has a purely imaginary root. With 
a purely imaginary root, this textbook model becomes a particular case 
from a stability perspective as the stability depends solely on the nature 
of the input signal. To ensure the stability of the three-state model 
around the operating point defined by the value of the input 0u , all 
parameters of the pivot column must have the same sign. In terms of 
constraints ( cst ), this amount to defining the following inequalities:

1 : 0 1cst <  					                   (11)

( )1 0 3 4 2 43 : 0cst k u k k k k< + + 			                   (12)

( )1 0 3 4 2 43 : 0cst k u k k k k< + +  			                (13)

The purely imaginary root of this textbook example, represented by 
c0 does not provide an asymptotic stability for this model (see Section 
2). Only a simple stability can be guaranteed for the three-state system. 
For example by choosing the parameters k1=0.7, k2=0.2, k3=0.4 and 
k4=0.4 𝑢0=1.0 [28], the constraints necessary to have a stable model 
are met and a simulation around this operating point is shown in 
Figure 4. An input 𝑢0=1.0 is applied at 50 msec during 20 msec, and 

is shown in Figure 4A (black). During this interval (50-70 msec), the 
states respectively presented in Figure 4B, 4C and 4D (red, green and 
blue) change the value of concentration without generating divergence. 
Once the application of the input u0 is interrupted, each state returns to 
its respective steady state.

It should be noted that some models might receive negative input 
signals, such as voltage-dependent channels. For this reason, the 
three-state model was also tested while retaining 𝑢0 parameters and 
applying a negative input value equal to -0.5. With this value of 𝑢0 it 
is easy to see that the stability constraints specified by equations (12) 
and (13) are not met; therefore the model is unstable for a parameter 
𝑢0=-0.5. The instability of the model as provided by the Routh-Hurwitz 
criterion is verified by the simulation presented in Figure 5. Indeed, 

x1, x2 and x3 represent the model states and 𝑢 an input to the system. The 
ki parameters represent transition probabilities between the different states.

Figure 3: Schematic representation of a simplified kinetic bilinear model.

𝜆3 a3 a1

𝜆2 a2 a0

𝜆1 b1 b0

𝜆0 c0

Table 1: The Routh-Hurwitz table of the simplified kinetic bilinear model with three 
states. The first column is the pivots column.

A: input of the system. B: state x1. C: state x2 D: state x3. All states are stable.
Figure 4: Simulation of the simplified model, using parameter values that satisfy 
stability constraints.

A: input of the system. B: state x1. C: state x2 D: state x3. States x2 and x3 are 
unstable as there are negative.
Figure 5: Simulation of the simplified model, using parameter values that do not 
satisfy stability constraints.
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the concentrations of the various states (x1, x2 and x3) diverge during 
the application of the input. From a biological point of view, a negative 
concentration as shown in Figure 5C and 5D of the system states is not 
possible [28]. 

When the system is no longer excited by the negative value of 𝑢0, 
each state returns to its respective steady state.

The stability constraints (equations (11) to (13)) provide a significant 
advantage for parameter optimization. Indeed, the constraints 
provided by the RH criterion allow determining the range of validity 
of a varying parameter. It is therefore possible to determine an area 
of stability in the studied neighborhood. In the case of the linearized 
three-state model (equation (9)), the validity domain of the parameter 
𝑢0 ensuring stability of the system which depends on other parameters 
can be obtained by replacing the 0 2 3 0           0.06u k k u> − ⇒ > − parameters values in equations 
(11) to (13). Easily, it may conclude that to ensure the stability of this 
model, the parameter 𝑢0 must satisfy the following inequalities:

0 2 3 0           0.06u k k u> − ⇒ > −

Figure 6 shows the four constraints provided by the Routh-
Hurwitz criterion with the ki parameters previously selected. The 
dashed line represents the value of 𝑢0=-0.6. All constraints are positive 
for all values above this mark (dashed line), whereas below this value 
some constraints become negative. Thus, stability conditions for the 

model studied around the operating point of interest to the user are 
determined.

GABAA receptor model

After this textbook case example, the proposed algorithm is applied 
to a GABAA receptor model. The GABAA receptor is an ionic receptor 
and is activated by application of gamma-aminobutyric acid, aka 
GABA. This ionotropic receptor is of great importance since it binds 
the main inhibitory neurotransmitter in the CNS and constitutes 
an important target in the treatment of many CNS diseases [29,30]. 
Figure 7 shows the kinetic scheme of the GABAA receptor model 
developed [30] and used for this study. This model consists of eight 
states represented by rectangles on the kinetic scheme. A parameter 
optimization phase is considered to modify the GABAA receptor 
model deactivation to perform the stability analysis. In other word, 
optimization of association and dissociation parameters outlined in 
red in Figure 7 will be conducted to determine stability constraints 
according to these parameters.

Considering the GABA input as a piecewise constant GABA0, it 
is possible to linearize the system and therefore obtain the following 
matrix:

1 0 1

1 0 1 2 3 6

0 2 8 5 7

8 8

3 3 10

5 10 0 4

6

7

2

6

7

0 0 0 0 0 0
0 0 0

0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ka GABA kd
ka GABA K kd kd kd

ka GABA K kd kd kd
ka kd

A
ka K kdh

ka ka GABA K
ka kd

ka kd

− 
 
 
 
 

− =  
 
 
 − 
 − 

(14)

with ( )1 2 0 1 3 6K ka GABA kd kd kd= − + + + , ( )3 3 10 0K kd ka GABA= − + , 
( )3 3 10 0K kd ka GABA= − +  and k4=-(kd5+kd10). Where ikd  and ikd  

represent the association and dissociation rate constants, respectively 
between the different states of the kinetic scheme of Figure 7. 
Computing the determinant of Matrix (14) gives the following 
characteristic polynomial for the GABAA receptor model:

0

8 7 6 5 4 3 2 1
7 6 5 4 3 2 1 0GABAP a a a a a a a aλ λ λ λ λ λ λ λ= + + + + + + + +          (15)

 By arranging the parameters of (15) in Table 2 and by applying the 
Routh-Hurwitz criterion on this table, the constraints that ensure the 
stability of the model in the first column of this table (pivots column) 
are obtained.

The stability domain of the GABAA receptor model is defined by 
the pivot column of the Routh-Hurwiz table (Table 2). The parameters 
in this column represent the constraints to be respected to guarantee 
the stability of the GABAA receptor model during the parameter 
optimization phase. The parameter a8 is equal to 1, implying that all 
constraints must be positive to ensure stability of the equilibrium point 
of the model. However, Ds parameter is equal to zero; which implies 
that an asymptotic stability cannot be provided. Only stability around 
the operating point may be guaranteed for this model.

To achieve a deactivation optimization on GABAA receptor model 
ka3, kd3, ka5, ka8 and kd8 parameter values need to be modified. They 
represent the optimization settings for our stability study. Using the 
parameter values given by ref. [31], the stability constraints provided 
by the Routh-Hurwitz criterion are met and the response of the 
simulation remains stable for 1mM of GABA during 250 msec as 

Figure 6: Graphical representation of the four constraints provided by the 
Routh-Hurwitz criterion for the three-state model.

Optimization is considered on association and dissociation parameters outlined 
in red.

Figure 7: Kinetic scheme of the GABAA receptor.
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shown in Figure 8. The optimization parameters are changed randomly 
between 0 and +30. This range of values corresponds to the domain 
of validity of the association and dissociation rate constants proposed 
by ref. [31] for our GABAA model receptor. This random change in 
optimization settings places the system in situations where the stability 
constraints are no longer guaranteed and will generate unstable 
simulations conditions. Figure 9 illustrates responses of the model in 
an instable condition, when 1mM of GABA is applied during 20 msec. 
Instability on the desensitization parameters of the GABAA model 
receptor produces instability on desensitization state ‘DA2F’. As shown 
in Figure 9D, instability on ‘OA2’ open state appears too, suggesting 
that the instability propagates in the kinetic model. ‘DA2F’ state is 
biologically unstable, as a negative concentration is impossible; ‘OA2’ 
state is unstable too: it corresponds to the channel opening probability 
for the receptor and a probability superior to 1 is therefore impossible 
(1 corresponds to 100% opening for the receptor).

To perform an analysis of the GABAA receptor model, the RH 
criterion enables the identification of stability constraints during 
parameter optimization phase. Indeed, once the model is linearized 
around the operating point of interest to the user, it is possible to 
identify constraints that ensure model stability. The constraints 
may then be integrated within the optimization process making the 
operation completely transparent to users regardless of their area of 
expertise.

Besides determining model stability in the parameter optimization 
phase this criterion may also be used to determine the stability domain 
of model parameters found in the literature. Indeed, keeping the 
GABAA model receptors with the parameters used in ref. [31], it is 
possible to determine whether the supplied parameters allow the model 
to operate in stable conditions. Figure 10 shows the stability constraints 
of the GABAA receptor model with parameters used in ref. [31]. To 
ensure the stability of the model all constraints must have the same 
sign. Maintaining the constraint a8 to a constant equal to 1 therefore 
implies that all other constraints must remain positive. Thus, the 

𝜆8 a8 a6 a4 a2 a0

𝜆7 a7 a5 a3 a1

𝜆6 b6 b4 b2 b0

𝜆5 c5 C3 c1

𝜆4 d4 d2 d0

𝜆3 e3 e1

𝜆2 f2 f0

𝜆1 g1

𝜆0 h0

Table 2: Representation of the Routh-Hurwitz table for the characteristic 
polynomial of the GABAA model receptor. The first column is the pivots column.

1 mM GABA is applied as input to the system for 250 msec.
Figure 8: Simulation of GABAA Model receptor with parameters that meet the 
stability constraints.

The parameters used were obtained after random change between 0 and 30 of 
the parameters considered during desensitization optimization. 1mM GABA is 
applied as input to the system for 20 msec.
Figure 9: Simulation of the GABAA receptor model with parameters that do not 
meet the stability constraints.

The associations and dissociations parameters are provided from [31]. All 
constraints are positive or zero between the two red dotted lines, indicating 
that with [GABA] between 0 and 6.54mM, the GABAA receptor model is stable.
Figure 10: Graphical representation of stability constraints for GABAA receptor 
model.
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user knows the values of GABA where the equilibrium point of the 
linearized model will remain stable.

Figure 10 shows that all constraints are positive or equal to zero 
between the two dotted lines. Indeed, h0 constraint is a constant 
equal to zero, implying that this GABAA receptor model may not be 
asymptotically stable, but globally stable only if all other constraints 
are positive. The dotted line on the left corresponds to a GABA 
concentration equal to -0.0015 mM while the one on the right 
corresponds to a GABA concentration equal to 6.54 mM. Indeed, for 
a numerical value of [GABA] less than -0.0015 mM, the constraints 
d4, e3 and f2 are negative; whereas for a numerical value of [GABA] 
greater than 6.54 mM the constraint f2 is again negative. It is obvious 
that no negative GABA concentration may be administered. Finally, 
the stability domain reading Ds of this GABAA receptor model with 
the parameters proposed in ref. [31] is straightforward, as described 
in Figure 10. The stability domain Ds of our studied bilinear kinetic 
receptor model can be written as follows:

[ ] : 0 ; 6.54s GABA∈ +D 			                (16)

 The Routh-Hurwitz criterion therefore leads us to conclude that 
for the GABAA receptor model with the parameters proposed by Pugh 
and Raman [31]. The model is globally stable if the concentration of 
GABA remains between zero and 6.54 mM.

Conclusions
The primary objective of this study was to determine stability 

constraint to facilitate the development of kinetic models. We 
proposed to linearize Markov state kinetic models around an operating 
point considering the input of the bilinear model as piecewise. This 
linearization allowed application of the Routh-Hurwitz criterion. We 
first applied this criterion on a textbook case model and demonstrated 
that the resulting constraints indeed guaranteed stability of the model, 
thus increasing the chances of success of the optimization phase. 
Similarly, without the constraints equations guaranteeing the stability, 
a random parameters change in optimization process may result in 
instability in the model. In addition to identifying constraints that 
ensure the stability of synaptic receptor models, the Routh-Hurwitz 
criterion also allows identification of the stability range, i.e., the 
determination of the range of input values allowed for a predefined 
parameter set. We illustrated our approach with a brief study of a 
GABAA receptor model and showed that the parameters provided 
by Pugh and Raman [31] define a model that is numerically stable if 
GABA concentration remains under 6.54 mM.

It is important to remember that bilinear kinetic receptors are 
modeled by ODE. The resolution of an ODE is discretized; this implies 
that bilinear kinetic receptor models are discrete time systems. As the 
studied models are continuous but resolved by a discrete time method 
then the stability constraints needs to be obtained with a discrete time 
criterion. The Jury criterion [32] is the equivalent of RH criterion for 
linear discrete time systems. Remark that bilinear kinetic receptor 
models are mostly hybrid [33]. Hybrid systems combine several 
operation modes. Voltage-dependent calcium channels (VDCC) 
are an example of a well-known hybrid system in neuroscience [34]. 
As presented by Jaffe et al. [34], the equations describing the VDCC 
model generate a specific behavior for a membrane potential that is 
negative or equal to zero and a completely different behavior when the 
potential becomes strictly positive. Future work will consist in adapting 
the RH and Jury criteria methods to such bilinear hybrid systems. 
Notice that computational neuroscience often involves models of 

ever increasing computational complexity [35], our team has already 
invested significant efforts in reduction of model complexity. Another 
orientation work may be considered, in parallel to the studied stability 
constraints here, in investigating a reduction of model order [36,37], 
while guaranteeing its stability and maintaining desired nonlinear 
dynamic response.
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