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Background
A microRNA (miRNA) is a small non-coding RNA molecule 

(containing about 22 nucleotides), which functions in RNA silencing 
and post-transcriptional regulation of gene expression [1-3]. MiRNAs 
are involved in many different biological processes such as cell 
proliferation, differentiation, apoptosis, fat metabolism, and human 
cancer genes [4-8]. Previous studies suggest that miRNAs expression 
profiles are correlated with disease pathogenesis and prognosis, and 
may ultimately be useful in the management of human cancer; while 
miRNAs may function as candidates for diagnostic and prognostic 
biomarkers and predictors of drug response. For example, miRNAs 
can act either as oncogenes or tumor suppressors contributing to 
initiation and progression of cancer [3,6,9-12]. MiRNA expression 
can be detected by a two-step polymerase chain reaction process of 
RT-PCR followed by quantitative PCR [13], microarray [14], and 
miRNA sequencing [15]. The raw counts of miRNA expression are 
usually skewed and not meet the assumptions of parametric statistical 
tests, therefore a log2 transformation is applied [16,17], for example 
by a weighted trimmed mean of the log expression ratios using the R/
Bioconductor package [18,19]. 

Simple Statistical Methods
Some studies examined the miRNA expression level as a categorical 

variable, which was dichotomized as low and high level expression 
based on the median [20-22]. The chi-square test has been used to 
determine the associations of expression of miRNA-21 with patients’ 
clinical parameters such as lymph node metastasis, clinical stage and 
poor prognosis in non-small cell lung cancer (NSCLC) as categorical 
variables [22]. This approach was also used to test the relationship 
between miRNA-221 expression and binary clinicopathologic features 
such as histology, p-TNM stage and history of smoking [23]; and the 
correlation between miRNA-124 down-regulates SOX8 expression 
and binary clinicopathologic factors such as tumor size, lymph node 
metastasis, differentiation classification and clinical stage [24].

However, most other studies treated the miRNA expression as 

a continuous variable. For example, the t-test for two-independent 
samples has been used to compare the expression values of miRNAs 
between the control and lung cancer groups [17,25], the expression 
of miRNA-146 in NSCLC cancer tissue (43 individuals) and normal 
tissue (32 individuals) [26]. Furthermore, the t-test for paired samples 
was performed to identify if miRNA-31 is differentially expressed 
between lung adenocarcinoma and matched normal adjacent tissues 
using the Cancer Genome Atlas (TCGA) dataset [27]. Moreover, one-
way ANOVA was utilized to examine the association between E2F 
miRNA expression and degree of tumor cell invasion in gastric cancer 
[28]. Additionally, non-parametric methods such as Wilcoxon sign-
rank test for paired samples analysis was used to compare expression 
of miRNAs across the seven tumor samples in breast cancer [29] and 
Kruskal-Wallis test was used to determine the significance of miRNAs 
among the biochemical failure categories [30].

The simple correlation analysis has been used to describe the 
relationship of miRNA expression with cancer clinical phenotypes. 
For example, the correlation between miRNA-148a expression and the 
methylation level of the DNA region encoding miRNA-148a in tissues was 
evaluated by Pearson’s correlation [31]. Other studies used the Spearman's 
rank correlation analysis to correlate miRNAs with mRNA in the breast 
cancer samples [32], the alterations of methylation with expression level 
of miRNA-9-1 gene in the lung tumors [33], and the pairwise miRNA 
expression in seven types of cancer using the TCGA data [34].

Linear and Logistic Regression Models
The linear and logistic regression models have been used to 
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Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (containing about 22 nucleotides) that regulate gene expression. 

MiRNAs are involved in many different biological processes such as cell proliferation, differentiation, apoptosis, fat 
metabolism, and human cancer genes; while miRNAs may function as candidates for diagnostic and prognostic 
biomarkers and predictors of drug response. This paper emphasizes the statistical methods in the analysis of the 
associations of miRNA gene expression with human cancers and related clinical phenotypes: 1) simple statistical 
methods include chi-square test, correlation analysis, t-test and one-way ANOVA; 2) regression models include linear 
and logistic regression; 3) survival analysis approaches such as non-parametric Kaplan-Meier method and log-rank 
test as well as semi-parametric Cox proportional hazards models have been used for time to event data; 4) multivariate 
method such as cluster analysis has been used for clustering samples and principal component analysis (PCA) has 
been used for data mining; 5) Bayesian statistical methods have recently made great inroads into many areas of science, 
including the assessment of association between miRNA expression and human cancers; and 6) multiple testing.
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model and median time-to-event prediction algorithm and applied it 
to two datasets integrated from the four genomic data types (mRNA, 
DNA methylation, DNA copy-number alteration and miRNA) in the 
TCGA data.

Multivariate Methods
Multivariate analysis methods such as cluster analysis has been 

used for clustering samples, and principal component analysis 
(PCA) has been used for data mining. For example, to identify 
miRNA expression patterns in breast cancer, one study performed 
an unsupervised hierarchical complete linkage cluster analysis using 
Euclidean distance as dissimilarity metric; meanwhile a Pearson χ2 test 
and a Goeman global test were used to investigate the association of 
the sample clustering result with clinicopathological variables [32,45]. 
Keller et al. [25] analyzed the abundance of 904 miRNAs in serum from 
eight cancer patients at three time points and from six healthy control 
individuals and identified clusters based on the identified miRNA 
signatures, hierarchical clustering and a self-organizing map; while 
Oberg et al. [46] used PCA and hierarchical cluster analyses to visualize 
miRNA expression patterns present at a global level in colon cancer. 
Another study applied a complete linkage hierarchical clustering using 
the Euclidian distance to compute the dissimilarity of miRNA and 
samples independently of each other using the normalized data [17]. 
In addition, Li et al. [21] identified an eight-miRNA (miR-31, miR-
196b, miR-766, miR-519a-1, miR-375, miR-187, miR-331 and miR-
101-1) signature for the prediction of overall survival of patients with 
lung adenocarcinoma (LUAD) using supervised principal components 
method in the TCGA-derived LUAD cohort. 

Bayesian Statistics
Bayesian statistical methods have recently made great inroads into 

many areas of science [47], including the assessment of association 
between miRNA expression and human cancers. One of the main 
challenges in modeling the statistical dependence between high-
throughput studies is that a large number of measurements (usually in 
thousands) is available for a relatively small number (usually in tens or 
hundreds) of patient samples; therefore, classical statistical approaches 
based on linear models and hierarchical clustering are prone to over-
fitting [48,49]. In these situations, Efron [48] recommended accounting 
for high-dimensionality by using approaches that borrow information 
across covariates to compensate for the limited information available 
across samples, which leads to better and more reliable inference. 

Several approaches have been developed to address these challenges 
in various contexts, for example hierarchical Bayesian modeling 
approaches based on linear shrinkage estimators [50]. For predicting 
relevant clinical outcomes, Srivastava et al. [51] proposed a flexible 
statistical machine learning approach that acknowledges and models 
the interaction between platform-specific measurements through 
nonlinear kernel machines and borrows information within and 
between platforms through a hierarchical Bayesian framework. The 
methods of integrating gene/mRNA expression and miRNA profiles 
for predicting patient survival times were applied to the TCGA based 
glioblastoma multiforme (GBM) dataset [51]. Recently, Chekouo et al. 
[52] proposed a novel Bayesian model to identify miRNAs and their 
target genes that were associated with survival time by incorporating 
the miRNA regulatory network through prior distributions.

Multiple Testing
The number of miRNA in human genome is abundant and multiple 

examine the associations of miRNA expression with cancer and clinical 
phenotypes. For example, linear regression analysis was used to identify 
the association of 335 miRNAs with recurrent ovarian cancer cell lines 
[35] and to examine the association between cigarettes per day in lung 
cancer patients and miRNA expression [36]. Recently, a multiple linear 
regression analysis was used to investigate the associations of each 
mRNA transcript with the corresponding miRNAs in colorectal cancer 
[37]. 

The binary logistic regression analysis was utilized to select the top 
25 miRNA genes with prognostic relevance in neuroblastoma, that 
is, the miRNAs with the lowest P-value in a model testing miRNA 
expression levels (below or above the median expression) versus overall 
survival [38], evaluate the ability of chosen miRNAs to distinguish 
between breast cancer cases and controls [39], and differentially 
expressed genes that are regulated by the mRNAs expression between 
gastric cancer and paired adjacent normal tissues [28]. Multiple logistic 
regression analyses have been performed to investigate the role of 
miRNA signature on binary outcomes in neuroblastoma such as cases 
defined as relapse, progression, or death from disease (progression-
free survival), and death (overall survival) comparing with controls 
defined as nonfailure in the first 3 years of follow-up, adjusted for age 
at diagnosis, stage and other phenotypes [38]. Another study used a 
multiple logistic model of specific miRNA biomarkers to predict the 
presence of menstrual blood [40]. Recently, Zhang et al. [41] evaluated 
the associations of both human papillomavirus-HPV16 status and 
IL-1α rs3783553 polymorphism at the miRNA-122 binding site, 
individually and in combination, with the risk of oral squamous cell 
carcinoma (OSCC) using both univariate and multivariable logistic 
regression analyses.

Survival Analysis	  
The non-parametric Kaplan-Meier method has been used to 

estimate the survival distributions for expression of miRNA-21 [42], 
miRNA-148a [31], miRNA-31 [27], miRNA-221 [23], and miRNA-124 
in NSCLC [24]; while the log-rank test has been used to analyze 
the survival differences according to expression between different 
subgroups [23,24,27,31,42]. Recently, the Kaplan-Meier method 
was used to estimate the overall survival curves for four miRNAs 
(miRNA-21, 22, 155 and 210) in the TCGA glioblastoma multiforme 
dataset using the BRB-Array Tools - R/BioConductor [16]. Another 
recent study used the Kaplan-Meier survival analysis to estimate the 
survival distributions for patients in each of 5 subtypes of glioblastoma 
multiforme based on significant miRNAs and applied the log-rank test 
to assess the statistical significance between the stratified high- and 
low-risk survival groups in primary glioblastoma in the TCGA dataset 
using GraphPad Prism 6.0 statistical software [43].

The semi-parametric Cox proportional hazards model has been 
widely used to construct respective prognostic miRNA signatures of 
cancers [21,22,27,42,43]. For example, multivariable Cox proportional 
hazards model was used to identify the significant influence of miRNA-
148a expression on survival, adjusted for gender, age, histologic grade, T 
stage and smoking status [31]. Another study used the univariable Cox 
regression analysis to examine the association between 9 continuous 
miRNA expression and overall survival rate of Glioblastoma Multiforme 
(GBM) using the TCGA dataset; while multivariable Cox regression 
analysis was performed by stratifying patients according to age and 
using MGMT methylation status, IDH1 mutations, pre-treatment, 
recurrence, and TCGA prognostic classification as covariates [16]. 
Especially, Mankoo et al. [44] implemented a multivariate Cox Lasso 
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outcomes have been measured in many miRNA expression studies. 
Therefore, the multiple testing issue is a big statistical challenge. 
The conservative Bonferroni correction (0.05/n, n is the number of 
tested miRNA) has been used for dealing with multiple testing [53]. 
Furthermore, the false discovery rate (FDR) based on the Benjamini 
and Hochberg method [54] was used to correct multiple testing in 
comparison of miRNA expression levels across different groups [55-
57]. Additionally, some studies have used permutation tests to account 
for multiple testing in comparison of miRNA expression profile, for 
example, by using 1,000 or 10,000 permutations [36,43,53]. 

Discussion and Future Direction
The t-test and one-way ANOVA require the assumption of 

normality of the data; however, such assumption is often violated in 
practice. Therefore, generalized linear models (GLMs) and generalized 
linear mixed models (GLMMs) can relax the assumption and deal 
with binary and counts data. For example, GLMMs can be used to 
compare the miRNA measures before/after or with/without treatment. 
Furthermore, non-parametric statistical methods may be alternatives 
in some specific situations to describe the miRNA data with cancer.

In survival analysis, many studies have focused on non-parametric 
methods such as Kaplan-Meier method and log-rank test and semi-
parametric Cox proportional hazards models. Non-parametric 
methods have the advantages of no assumptions for the underlying 
survival distributions; while Cox model made certain assumptions 
about the nature of hazard function for proportional hazards regression 
method. In practice, it can be assumed that the survival function is of a 
certain form such as exponential, Weibull, and so on, with one or more 
parameters whose values are unknown, to be estimated from real data 
[58]. Furthermore, if the shape of the survival distribution is known, 
parametric regression models may produce more efficient estimates 
than Cox model [59]. 

Till now, the sample sizes used in miRNA expression studies are 
relatively small, therefore, Bayesian methods may have some advantages 
in flexibility and for incorporating information from previous studies. 
Future studies with large sample sizes will be required to increase 
the power in detection of the significance and also for adjusting for 
multiple covariates in regression models. In addition, due to the 
complex correlation structure between multiple tests, adjusting for 
multiple testing is a big statistical challenge but is essential in analysis 
of miRNA expression with human cancers.
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