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Introduction 
The skin is colonized by a diverse array of microorganisms including 

bacteria and fungi. The skin microbiome is defined as the collection 
of all microbes that colonize the skin [1]. Environments at various 
topographical areas of skin can affect the microbial colonization. The 
major bacterial-fungal populations colonizing human scalps have been 
characterized [2,3]. Furthermore, the dysbiosis of bacterial-fungal 
populations has been implicated in scalp dandruff, which presents as 
significant problems to large numbers of people [4]. Dandruff scalps 
are associated with a higher abundance of Malassezia restricta and 
Staphylococcal species [5]. The severity of dandruff can range from 
mild scale formation similar to dry skin to seborrheic dermatitis 
[6]. The impairment of proper hydration in skin barrier can result 
in the typical epidermal proliferation, keratinocyte differentiation 
and stratum corneum maturation, which may cause dandruff [7]. 
Excessive secretion of the sebaceous gland also can underlie dandruff 
development. Besides dysfunction of the skin barrier and sebaceous 
gland, fungal/bacterial dysbiosis may be one of the factors that result in 
the progression of human dandruff.

Bacterial interference, or bacteriotherapy, in which commensal 
bacteria as probiotics are used to rein in the over-growth of opportunistic 
microbes, has been shown to be a promising modality for normalization 
of dysbiosis in the human microbiome [8-14]. Our pioneer studies 
demonstrated that the skin commensal bacteria can function as 
probiotic bacteria to undergo fermentation and produce short-chain 
fatty acids (SCFAs) [15]. Staphylococcus epidermidis (S. epidermidis), 
a skin commensal bacterium, can exploit glycerol fermentation to 
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restrain the over-growth of opportunistic Propionibacterium acnes (P. 
acnes) [16]. Succinic acid, one of the SCFAs in fermentation products 
of S. epidermidis, inhibits the P. acnes growth in vitro and in vivo. Based 
on the data from our previous studies, we conjecture that production 
of SCFAs by probiotic bacteria in skin is a part of innate immunity to 
equilibrate the dysbiosis of the skin microbiome. In fact, it has been 
documented that SCFAs, although concentrations are relatively low in 
the skin, played a crucial role in altering the predominant residence 
of bacteria on normal human skin [17]. Many SCFAs with potent 
antimicrobial activities have been approved by the U.S. Environmental 
Protection Agency (EPA) as active ingredients for use as fungicides 
and bactericides on stored grains, poultry litter, and drinking water 
for poultry and livestock [18,19]. Furthermore, the Food and Drug 
Administration (FDA) has approved many SCFAs as flavor enhancers, 
miscellaneous and general purpose food chemicals, neutralizing agents, 
and pH control agents [20]. 
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Currently, fungicides are the most effective drugs for treating 
dandruff. The zinc pyrithione (ZPT), selenium sulfide, coal tar and 
ketoconazole have been approved by the FDA to improve the dandruff 
by removal of fungi [7]. Keratolytic agents such as salicylic acid and 
sulfur were used to loosen the attachments between the corneocytes, 
allowing dandruff to get washed off [21]. However, the literature 
increasingly demonstrates that the prolong use of fungicides for treating 
a fungal infection of the scalp can be highly toxic [22]. The side-effects 
of keratolytic agents include dryness and irritation. 

In the present study, we have identified and isolated Staphylococcus 
lugdunensis (S. lugdunensis) bacterium and Candida parapsilosis (C. 
parapsilosis) fungus from human dandruff flakes. We also demonstrated 
that S. lugdunensis can counteract the growth of C. parapsilosis via 
fermentation, validating the probiotic activity of S. lugdunensis. It has 
reported that bacteria can use a polyethylene glycol (PEG) polymer 
as a carbon source and fermentatively convert PEG to acetate and 
ethanol [23]. A diblock methoxy poly(ethylene glycol)-b-poly(ɛ-
caprolactone) (mPEG-PCL) polymer was synthesized as a selective 
fermentation initiator which can exclusively trigger the fermentation of 
S. lugdunensis, but not C. parapsilosis, to yield acetate. We also revealed 
that acetate and its analog exert excellent activities against the growth 
of fungi in human dandruff flakes. 

A prevalence of dandruff of up to 50% was found in the general 
population and approximately 50 million people suffer from dandruff 
in the United States (U.S.) with nearly $300 million spent on various 
dandruff treatment products annually [24]. Thus, the significance in 
this study includes providing a brand new approach to treat the fungal 
infection of the scalp skin, thereby benefiting the entire community 
of patients with dandruff or seborrheic dermatitis. Besides dandruff, 
hyperalimentation solutions, prosthetic devices, indwelling catheters 
and the nosocomial spread of disease through the hands of health care 
workers can be caused by C. parapsilosis infections [25]. Therefore, 
fermenting S. lugdunensis bacteria and their ferment metabolites may 
be novel therapeutics for the treatment of C. parapsilosis-associated 
infections. 

Materials and Methods 
Dandruff collection and microbial growth

Ethical approval for dandruff collection was obtained from 
Department of Dermatology, Taipei Medical University, Taiwan. The 
written consents from all participants were obtained before conducting 
dandruff collection. Those dandruff flakes with sizes greater than 1 
mm2 were placed on malt extract agar (MEA) (Scharlab, S.L., Barcelona, 
Spain) plate’s right after dandruff collection. Agar plates with dandruff 
flakes were incubated at 30°C until the microbial colonies were formed. 

Microbial identification 

Colonies on MEA plates were picked up by sterile toothpicks and 
DNA was extracted by an EasyPure Genomic DNA Spin kit (Bioman 
Scientific Co., Ltd, Taipei, Taiwan). For bacterial identification, 
polymerase chain reaction (PCR) with 16S rRNA 27F and 534R 
primers in addition to sequencing of PCR products was conducted as 
previously described [26]. For fungal identification, the D1/D2 5.8S 
rRNA gene was sequenced directly from the PCR products by using the 
primer pairs ITS1-Reverse (5’-TCCGTAGGTGAACCTGCGG-3’) 
and ITS4-Forward (5’-TCCTCCGCTTATTGATATGC-3’) [27]. 
PCR was performed under the following conditions: after an initial 
3 min denaturation step at 95°C, 28 cycles of amplification were 
performed, each including 30 sec denaturation at 95°C, 30 sec 

annealing at 52°C and 1.5 min extension at 72°C, followed by a final 
5 min extension at 72°C. The gene sequences of both 16S rRNA and 
D1/D2 5.8S rRNA were analyzed using the basic local alignment 
search tool (BLASTn).

Culture of microbes

Identified bacteria and fungi were cultured in tryptic soy broth 
(TSB) and potato dextrose agar (PDA) (Sigma, St. Louis, MO, USA), 
respectively. Overnight cultures were diluted 1:100 and cultured 
to an absorbance at 600 nm [optical density (OD)600]=1.0. For some 
experiments, microbes were harvested by centrifugation at 5,000 g for 
10 min, washed with phosphate buffered saline (PBS), and suspended 
in PBS.

Co-culture of S. lugdunensis and C. parapsilosis

S. lugdunensis [105 colony forming unit (CFU)] was co-cultured 
with C. parapsilosis (105 CFU) in rich media (10 ml) [10 g/l yeast extract 
(Biokar Diagnostics, Beauvais, France), 3 g/l TSB, 2.5 g/l K2HPO4 and 
1.5 g/l KH2PO4] in the presence or absence 20 g/l glycerol. After 3-day 
culture, media containing the microbes with a serial dilution (1-105 
CFU in 10 μl H2O) were spotted on furazolidone (10 µg/ml; Sigma)-
containing PDA plates for 3 days. 

Synthesis and characterizations of mPEG-PCL

The mPEG-PCL diblock polymer was synthesized by ring-opening 
polymerization of e-caprolactone (Sigma). Monomer e-caprolactone 
(0.308 moles) was introduced in round-bottom flask along with macro 
initiator methoxy poly(ethylene glycol) [mPEG, molecular weight 
(Mw=550, 3.96 mmoles) under purging of nitrogen gas. The mixture 
was then heated up. When the temperature reached 130°C, the catalyst 
stannous 2-ethyl hexanoate (Sigma) (0.272 mmoles) was added into the 
flask for 5 h. The product was firstly dissolved in dichloromethane and 
then precipitated in ether/hexane of a volumetric ratio of 7:3 for three 
times. The precipitated samples were collected and vacuum dried. The 
Mw of the polymer was measured by gel permeation chromatography 
(GPCmax VE2001, Viscotek, Texas, USA) connected to a refractive 
index detector (VE3580, Viscotek, Texas, USA). Two columns (500 and 
1000 angstroms, American Polymer Standards Corporation, USA) were 
maintained at 40°C. The polystyrene standards (Mw=972, 6,480, 9,000, 
and 18,200, Polymer Standards Service GmBH, German) were used to 
create the calibration line for the determination of Mw. The mPEG-PCL 
polymer was characterized by Fourier-transform Infrared spectroscopy 
(FT-IR) (FT-IR 410, JASCO, Tokyo, Japan) for the functional groups 
in the molecular structure of the polymer. The powdery mPEG-PCL 
polymer was compressed into a potassium bromide (KBr) plate for 
FT-IR measurements. The melting point which is related to Mw was 
measured by differential scanning calorimetry (DSC) (Jade DSC, 
Perkin-Elmer, Waltham, USA). 

Microbial fermentation 

S. lugdunensis and C. parapsilosis (105 CFU/ml) isolated from 
human dandruff flakes was incubated in rich media in the absence and 
presence of 20 g/l glycerol, 0.0005% mPEG diluted in water, or 0.0005% 
mPEG-PCL dissolved in 0.5% acetone at 37°C. Controls include rich 
media (with/without acetone) plus glycerol, mPEG, or mPEG-PCL 
without microbes. The 0.002% (w/v) phenol red (Sigma) in rich media 
with glycerol, mPEG or mPEG-PCL served as an indicator, changing 
the color from red-orange to yellow due to fermentation. The color 
change of phenol red from red-orange to yellow was monitored by the 
decrease in OD at 560 mM (OD560).
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Gas chromatography-mass spectrometry (GC/MS) 

S. lugdunensis (105 CFU/ml) was incubated in rich media in the 
presence of mPEG-PCL (0.0005%) for three days. After removing 
S. lugdunensis by centrifugation at 5,000 g for 10 min, SCFAs in the 
fermentation media (0.5 ml) were determined by ethyl acetate (Residue 
Analysis OmniSolv, EMD Millipore, Billerica, MA) liquid-liquid 
extraction after addition of the internal standard (0.1 mg/ml of 2H7-
butyric acid, C/D/N Isotopes, Quebec, Canada), acidification with 0.5% 
ortho-phosphoric acid (Thermo Fisher Scientific, Fair Lawn, NJ) and 
saturation with sodium chloride (Thermo Fisher Scientific) followed 
by GC-MS analysis using an Agilent 5890 Series II GC coupled with 
5971 MS detector (Agilent Technologies, Inc., Palo Alto, CA) [28]. A 
70 eV electron was used for ionization. Acetic, propionic, isobutyric, 
butyric, isovaleric and valeric acids were quantified by a calibration 
curve made from six non-zero levels using the Free Fatty Acids Test 
Standard (Restek Corporation, Bellefonte, PA).

Fungicidal effects of acetic acid and diethyleneglycol diacetate 
(Ac-DEG-Ac) 

To determine the fungicidal activities of acetic acid and Ac-DEG-
Ac, a pro-drug with two Ac esterified to a diethylene glycol (DEG) 
liner, C. parapsilosis (108 CFU in 1 ml H2O) was incubated overnight 
with acetic acid in H2O (1 ml) or Ac-DEG-Ac in 4% dimethyl sulfoxide 
(DMSO) (1 ml) at various concentrations (0.01-500 mM) as indicated 
in each individual experiment in media in an eppendorf. The controls 
were kept in 1 ml H2O or 4% DMSO. After incubation, fungi were 
diluted 1:10-1:105 with H2O. The percent growth inhibition of C. 
parapsilosis by acetic acid or Ac-DEG-Ac relative to fungi treated with 
control was determined.

Ex vivo efficacy of acetic acid and Ac-DEG-Ac against fungi 

The human dandruff flakes (>1 mm2) were cut in two halves, and 
the first half was incubated with acetic acid (10 mM in H2O) or Ac-
DEG-Ac (10 mM in 4% DMSO) for 3 h at room temperature. The 
other half was incubated with H2O or 4% DMSO as a control. Dandruff 
flakes were placed on MEA plates and incubated for 4 days at 30°C. The 

change in the area (mm2) of fungal growth in dandruffs was measured 
and calculated with ImageJ software (NIH, Bethesda, MD, USA). More 
than three dandruff flakes per group experiment were used.

Statistical analysis 

To determine significances between groups, comparisons were 
made using the two-tailed t-test. For all statistical tests, the P-values 
of <0.05 (*), <0.01 (**), and <0.001 (***) were accepted for statistical 
significance.

Results
Inhibition of C. parapsilosis growth by glycerol fermentation 
of S. lugdunensis

Four bacteria (S. lugdunensis, S. epidermidis, Staphylococcus 
warneri and Staphylococcus capitis) and two fungi (C. parapsilosis 
and Penicillium citrinum) were identified and isolated from human 
dandruff flakes (Supplementary Table 1). To examine the fermentation 
activities of these bacteria and fungi, each individual microbe was 
incubated in rich media in the presence of 20 g/l glycerol, a naturally 
occurring metabolite found in human skin [29], as the carbon source. 
Rich media plus glycerol and rich media plus microbes were used as 
controls. To observe the fermentation process, rich media were added 
with phenol red, a fermentation indicator, to assess SCFA production 
as a result of glycerol fermentation. Consistent with our previous 
study [16], media in the culture of S. epidermidis with glycerol turned 
yellow which is the result of acid production three days following 
incubation (data not shown), demonstrating microbial fermentation. 
Besides S. epidermidis, the S. lugdunensis (Figure 1a) and C. parapsilosis 
(Supplementary Figure 1) were two microbes in human dandruff that 
can elicit fermentation of glycerol, making media turn yellow 36 and 
96 h after incubation, respectively. S. lugdunesis is a normal inhabitant 
of the human skin. Previous studies demonstrated the isolation of C. 
parapsilosis from the human scalps and grew this fungus out along hair 
shafts planted in primary isolation media [30]. Our results here endorse 
that S. lugdunesis and C. parapsilosis co-exist in the human dandruff. 

To investigate if S. lugdunesis fermentation influences the growth 
of C. parapsilosis, S. lugdunesis was co-cultured with C. parapsilosis 
in the presence or absence of glycerol for three days. To establish a 
C. parapsilosis-selective plate, media (10 µl) from the co-culture of S. 
lugdunesis and C. parapsilosis was spotted on a PDA plate supplemented 
with 10 µg/ml furazolidone. We found that 10 µg/ml furazolidone 
can completely kill S. lugdunesis without affecting the growth of C. 
parapsilosis (Supplementary Figure 2). Three days after microbial 
co-culture with/without glycerol, media with serial dilutions (1-105) 
were spotted on C. parapsilosis-selective plates. The numbers of C. 
parapsilosis in the co-culture in the absence of glycerol found were at 
least one log order of magnitude greater than those in the co-culture in 
the presence of glycerol (Figure 1b). These data in Figure 1 suggest that 
S. lugdunesis mediates the glycerol fermentation to hamper the growth 
of C. parapsilosis.

Synthesis of mPEG-PCL as a selective fermentation initiator 
of S. lugdunensis

The polymerization was catalyzed by the addition of stannous 
2-ethylhexanoate. Upon the complexation of monomer ɛ-caprolactone 
with the catalyst, the nucleophilic mPEG reacted with the monomer 
ɛ-caprolactone to give the product mPEG-PCL [31]. The purified 
polymer of mPEG-PCL was a white powder. The number-average 
Mw and weight-average Mw of PEG-PCL were 5,182 and 9,767 Da, 

Figure 1: Probiotic activity of S. lugdunensis fermentation against C. parapsilosis. (a) S. lugdunensis (S. l.) (105 CFU/ml), 
was incubated in rich media (M) with or without glycerol (G). Rich media plus glycerol without S. lugdunensis was included as 
a control. S. lugdunensis fermentation on 36 h was displayed. A color change to yellow in the media (marked in a blue frame 
and yellow arrow) indicates that bacterial fermentation has occurred. (b) S. lugdunensis (105 CFU) was co-cultured with C. 
parapsilosis (105 CFU) in rich media (10 ml) in the presence (+G) or absence (-G) of glycerol (20 g/l). After 3 day culture, 
media (10 µl) with a serial dilution (1-105) were spotted on furazolidone (10 µg/ml) containing PDA plates for three days. Data 
representative of three separate experiments are shown.
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Figure 1: Probiotic activity of S. lugdunensis fermentation against C. 
parapsilosis. (a) S. lugdunensis (S. l.) (105 CFU/ml), was incubated in rich 
media (M) with or without glycerol (G). Rich media plus glycerol without S. 
lugdunensis was included as a control. S. lugdunensis fermentation on 36 
h was displayed. A color change to yellow in the media (marked in a blue 
frame and yellow arrow) indicates that bacterial fermentation has occurred. 
(b) S. lugdunensis (105 CFU) was co-cultured with C. parapsilosis (105 CFU) 
in rich media (10 ml) in the presence (+G) or absence (-G) of glycerol (20 
g/l). After 3 day culture, media (10 µl) with a serial dilution (1-105) were 
spotted on furazolidone (10 µg/ml) containing PDA plates for three days. Data 
representative of three separate experiments are shown.
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respectively, leading to a polydispersity of 1.885. The functional groups 
revealed in a FT-IR spectrum were found at wave numbers of 1,727.9 
cm-1 for C=O on PCL block and 1,184.1 cm-1 for C-O-C on mPEG 
block, respectively (Figure 2a). The melting point determined by DSC 
was at 53.6°C. Compared to our previous paper where the melting point 
of PEG-PCL having number-average Mw of 17,217 Da was 57.2°C, the 
mPEG-PCL used in the current study has lower Mw and yet lower 
melting point [32].  

PEG-derived polymers have been employed as a carbon source 
for microbial fermentation [23]. Different microbial species make 
different enzymes that ferment specific substrates. To examine whether 
S. lugdunesis and C. parapsilosis differentially utilizes the mPEG or 
mPEG-PCL for fermentation, S. lugdunesis or C. parapsilosis was 
incubated in rich media in the absence or presence of 0.0005% mPEG-
PCL. Controls include rich media with mPEG alone, mPEG-PCL alone 
or microbes alone. Incubation of S. lugdunesis with 0.0005% mPEG for 
36 h did not induce fermentation (Supplementary Figure 3). As shown 
in Figure 2b, mPEG-PCL selectively triggered S. lugdunesis, but not C. 
parapsilosis, to undergo fermentation. In the culture of S. lugdunesis 
with mPEG-PCL, the phenol red-containing media started turning 
yellow 36 h after culture. The OD560/pH values of media with mPEG-
PCL alone, S. lugdunesis alone or mPEG-PCL plus S. lugdunesis for 36 h 
are 0.53 ± 0.02/7.36 ± 0.01; 0.42 ± 0.01/7.12 ± 0.02; and 0.32 ± 0.01/6.88 
± 0.01. A significant decrease in OD560 and pH values in the media with 
mPEG-PCL plus S. lugdunesis indicated the mPEG-PCL fermentation 
of S. lugdunesis. No yellow media in the culture of C. parapsilosis 
with mPEG-PCL were detected. The mPEG-PCL was thus chosen 
as a selective fermentation initiator of S. lugdunensis. The exogenous 
addition of mPEG-PCL may be able to enhance the probiotic activities 
of S. lugdunensis for suppression of the growth of C. parapsilosis in 
human dandruff.

Identification of SCFAs produced by mPEG-PCL 
fermentation by GC/MS 

To identify the SCFAs in the ferments, the S. lugdunensis were 
incubated in phenol red-free rich media in the presence of mPEG-
PCL (0.0005%) for two days. Supernatants of bacterial culture S. 
lugdunensis mixed with 2H7-butyric acid (an internal standard) 

were subjected to GC-MS analysis. Two major SCFAs (acetic acid 
and isovaleric acid) in the fermented media of S. lugdunensis and 
2H7-butyric acid were detected by GC separation (Figure 3a). Mass 
spectra of acetic acid (Figure 3b) and isovaleric acid (data not shown) 
were subsequently generated. Molecular ions at 29, 43, 45 and 60 m/z 
values corresponding to [HCO]+, [CH3CO]+, [CH3CO]+, CH3COOH 
for acetic acid are detected in a MS spectrum (Figure 3b). These 
results demonstrate that S. lugdunensis fermentatively metabolized 
mPEG-PCL into SCFAs.

Suppression of the C. parapsilosis growth by acetic acid and 
Ac-DEG-Ac

Two pharmacokinetic drawbacks of SCFAs as drugs are associated 
with their rapid metabolization and inability to accomplish effective 
concentrations in vivo [33,34]. Thus, Ac-DEG-Ac, a pro-drug of acetic 
acid (Ac) which contains two acetic acids esterified to a DEG linker, was 
included for evaluation of its fungicidal activity against C. parapsilosis. 
To compare Ac-DEG-Ac to acetic acid, C. parapsilosis was incubated 
with the concentrations (0.01-500 mM) of acetic acid (Figures 4a and 
4b) in H2O or Ac-DEG-Ac (Figures 4c and 4d) in DMSO overnight. 
C. parapsilosis incubated with H2O or DMSO served as controls. Both 
acetic acid and Ac-DEG-Ac at concentrations in the range of 0.01-
10 mM inhibited approximately 50% growth of C. parapsilosis. Both 
agents at a concentration of 100 mM suppressed the growth of C. 
parapsilosis by greater than 90% and completely killed C. parapsilosis 
at a concentration of 500 mM, suggesting that both acetic acid and Ac-
DEG-Ac exert anti-C. parapsilosis activities in vitro.

Fungicidal activities of acetic acid and Ac-DEG-Ac against 
fungi in human dandruff

Filamentous microbes containing different fungi are typically 
found in human dandruffs. Besides anti-C. parapsilosis properties, we 
next examined if acetic acid and Ac-DEG-Ac can inhibit the growth of 
various fungi in human dandruffs. A human dandruff flake was cut in 
two halves, and the first half was incubated with 10 mM acetic acid or 
10 mM Ac-DEG-Ac. The other half was incubated with H2O or DMSO 
as controls. Four days after incubation, we found that both acetic acid 
and Ac-DEG-Ac can efficiently block the extension of fungal growth 
in human dandruffs. The result suggests that acetic acid and Ac-DEG-
Ac may have a broad spectrum of anti-fungal activity for treatment of 
human dandruff. 
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Figure 2: Characterizations of mPEG-PCL as a selective fermentation 
initiator of S. lugdunensis fermentation. (a) Three functional groups (C-O-C/
PEG/1184.1 cm-1; C=O/PCL/1727.9 cm-1; and C-H/PCL/2950.6 cm-1) of mPEG-
PCL were revealed in a FT-IR spectrum. (b) S. lugdunensis, but not (c) C. 
parapsilosis, fermented mPEG-PCL. 0.0005 % mPEG-PCL in 0.5 % acetone 
was used as a carbon source for fermentation. A blue frame and yellow arrow 
denote the mPEG-PCL fermentation of the S. lugdunensis. Representative 
data from three independent experiments are shown.

Figure 3: The ion chromatogram and mass spectrum from GC-MS for identification of SCFAs. (a) Total ion chromatogram for separation 
of the mixture of SCFAs containing acetic acid (Ac), 2H7-butyric acid (BA) (an internal standard) and isovaleric acid (IsoVa). (b) A mass 
spectrum for acetic acid. Molecular ions at 29, 43, 45 and 60 m/z for acetic acid were indicated.
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Figure 3: The ion chromatogram and mass spectrum from GC-MS for 
identification of SCFAs. (a) Total ion chromatogram for separation of the 
mixture of SCFAs containing acetic acid (Ac), 2H7-butyric acid (BA) (an internal 
standard) and isovaleric acid (IsoVa). (b) A mass spectrum for acetic acid. 
Molecular ions at 29, 43, 45 and 60 m/z for acetic acid were indicated.
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Figure 4: Suppression of C. parapsilosis growth by acetic acid and Ac-DEG-Ac. C. parapsilosis (108 CFU) was incubated with 0.01-500 
mM acetic acid in H2O (a, b) or Ac-DEG-Ac in 4% DMSO (c, d) overnight. Incubation of C. parapsilosis with H2O or 4% DMSO served 
as controls. After incubation, C. parapsilosis was diluted 1:10-1:105 with H2O, and 10 μl of the dilutions were spotted on an agar plate. 
Percent growth inhibition of C. parapsilosis relative to the treatment with H2O control was presented. The CFU counts were illustrated 
as the mean ± standard derivation (SD) of six independent experiments (b, d). ***P<0.001; **P<0.01; *P<0.a05, (two-tailed t-tests). UD, 
undetectable.
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Figure 4: Suppression of C. parapsilosis growth by acetic acid and Ac-DEG-
Ac. C. parapsilosis (108 CFU) was incubated with 0.01-500 mM acetic acid 
in H2O (a, b) or Ac-DEG-Ac in 4% DMSO (c, d) overnight. Incubation of C. 
parapsilosis with H2O or 4% DMSO served as controls. After incubation, C. 
parapsilosis was diluted 1:10-1:105 with H2O, and 10 μl of the dilutions were 
spotted on an agar plate. Percent growth inhibition of C. parapsilosis relative to 
the treatment with H2O control was presented. The CFU counts were illustrated 
as the mean ± standard derivation (SD) of six independent experiments (b, d). 
***P<0.001; **P<0.01; *P<0.05, (two-tailed t-tests). UD, undetectable.

Discussion 
At least three new findings are presented in the current study. 

First, S. lugdunensis was found to be a probiotic bacterium which can 
ferment glycerol and mPEG-PCL. Second, the mPEG-PCL was used 
for the first time as a selective fermentation initiator to exclusively 
trigger the fermentation of S. lugdunensis against C. parapsilosis. 
The mPEG-PCL, PEG- or PCL-derived polymers can be developed 
as drug adjuvants in the future to reduce the amount of active drugs 
while maintaining the antimicrobial activity, decreasing the risk of 
generating resistant microbes. Third, the fungicidal activity of Ac-
DEG-Ac demonstrates a successful approach for development of novel 
drugs from the resources of fermentation metabolites of skin probiotic 
bacteria. Yogurts containing live probiotic strains, the best examples 
of bacterial interference, have been used for centuries to maintain the 
digestive microbial ecosystem. Skin probiotic bacteria characterized in 
our previous papers can operate fermentation to suppress the pathogen 
colonization [15]. S. lugdunensis, a coagulase-negative staphylococcus, 
is a common colonizer of the human skin, and it is the only pathogen 
in about 10% of skin and soft tissue infections [35,36]. C. parapsilosis, 
a human opportunistic fungus, is frequently isolated from human 
skin [37]. It has been shown that C. parapsilosis can be isolated from 
human scalp [30]. The fungus has been recognized as commensal yeasts 
on the dog skin but also a causative microbe of seborrheic dermatitis, 
particularly in atopic dogs [38]. Although the clinical evidence about 
the oppositional relationship between S. lugdunensis and C. parapsilosis 
in the human skin is lacking, our data revealed that S. lugdunensis can 
exploit glycerol fermentation to hinder the growth of C. parapsilosis in 
vitro (Figure 1). During the development of dandruff, S. lugdunensis 
and C. parapsilosis may use the glycerol as a shared carbon source and 
produce different SCFAs as (antimicrobial) weapons to repel each other 
on the human scalp. C. parapsilosis may “win the battle” of microbial 
interference when the dandruff is persistent. Our strategy to cure 
dandruff is to deter the growth of C. parapsilosis by amplification of 
the probiotic activities of S. lugdunensis using a selective fermentation 
initiator.

PEG is a synthetic water-soluble polymer of the common structural 
formula H(OCH2CH2)nOH. An extracellular enzyme which can 

depolymerize long chain PEGs was identified [39]. The diol dehydratase 
and PEG acetaldehyde lyase in fermenting bacteria can degrade PEG 
[40]. However, results from other laboratories demonstrate that PEG 
degradation by fermenting bacteria was inhibited by ethylene glycol, 
probably owing to a blocking of the cellular uptake system. The results 
suggest that PEG was taken up into the bacteria and subsequently 
degraded inside [23]. The depolymerization of PEG can be catalyzed 
by bacteria via hydrolysis after a modification of the terminal ethylene 
glycol (EG) unit [23]. PEG fermentations yield acetaldehyde as an 
intermediate, which is further disproportionated to acetate and 
ethanol. A propionate-forming bacterium can ferment PEG to acetate 
and propionate [41]. PCL was found to be degraded by lipase from 
various sources and cutinase from a fungus [42,43]. PCL-degrading 
bacteria are widely distributed in nature. PCL depolymerase detected 
in both extracellular and intracellular fractions of bacterial cultures 
can efficiently degrade PCL [44]. No one reported that bacteria can 
use mPEG-PCL as a carbon source for fermentation. Our results 
demonstrate for the first time that S. lugdunensis, but not C. parapsilosis, 
can fermentatively metabolize mPEG-PCL to acetate and isovaleric acid 
(Figure 3). Since both S. lugdunensis and C. parapsilosis may use the 
same carbon source [e.g. glycerol; (Figure 1 and Supplementary Figure 
1)] outcompete each other to survive. Although it is unclear why S. 
lugdunensis can fermeatatively metabolize mPEG-PCL, but not mPEG 
(Supplementary Figure 3), it is possible that mPEG-PCL containing 
more carbon atoms than mPEG provides a relatively abundant 
carbon source for S. lugdunensis fermentation. In addition, although 
incubation of C. parapsilosis with mPEG-PCL for 96 h did not induce 
fermentation (Figure 2c), it is worth investigate whether C. parapsilosis 
can non-fermentatively degrade mPEG-PCL to metabolites that affect 
the growth of S. lugdunensis. Our results support that the mPEG-PCL 
can function as a selective fermentation initiator to specially amplify the 
fermentation activity of S. lugdunensis against C. parapsilosis. Therefore, 
mPEG-PCL holds promise as a manipulation technique to reduce the 
fungal over-growth in the dysbiotic dandruff.  

Phage therapy is yet another manipulation technique, by 
which selective overgrown microbes can be targeted with specific 
bacteriophages, thereby normalizing the dysbiotic skin microbiome. 
Although specific bacteriophages for C. parapsilosis have been not yet 
identified, the disadvantage of phage therapy includes the potential 
ability of bacteriophages to transfer the DNA from a microbe to another. 
This DNA transfer could be in charge of the transfer of pathogenicity 
determinants and virulence factors, resulting in the generation of 
even more resistant microbial strains [45-47]. Although the toxicity 
of mPEG-PCL to the skin has not been evaluated, the mPEG-PCL, a 
highly biocompatible and biodegradable copolymer, has been widely 
used as a component of nanoparticles for transdermal delivery [48]. 
Most importantly, both PEG and PCL have been approved by the 
FDA in specific applications used in humans as a drug delivery device. 
Thus, the development of mPEG-PLC as a targeted intervention may 
be relatively safe when it is employed to re-establish healthy patterns 
of bacterial-fungal interactions in the dysbiotic skin microbiome. 
Potentially, the mPEG-PCL can function as a drug adjuvant to augment 
the fermentation activity of skin probiotic bacteria and reduce the 
effective doses of fungicides in the future. The use of mPEG-PCL analog 
with lower dose of fungicides may minimize the risk of development of 
resistant fungi and the non-specific killing effect of fungicides on skin 
commensals. 

The SCFAs produced by fermentation of intestinal microbes in 
the human colon can reach a high level in the 20-140 mM range that 
can effectively ward off local pathogens [49]. However, the amounts of 
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SCFAs in peripheral circulation are relatively low, ranging from 3 to 7 
µM [49]. Numerous SCFAs are frequently detected in the skin and in 
the secretions of skin glands, such as the sweat, but their concentrations 
are generally low. For example, sweat only contains 0.0096% acetic acid 
[50]. Although the levels of SCFAs in human scalp skin have yet to be 
quantified, it has been documented that SCFAs have short half-lives 
and the apparent difficulty of achieving pharmacologic concentrations 
when they are administered in vivo. Furthermore, although SCFA is 
a normal human metabolite and theoretically less toxic, SCFA at high 
doses may create an extremely acid solution, which may be toxic to 
skin cells. A butyric acid pro-drug named pivaloylomethyl butyrate 
(AN-9) has been developed to achieve an effective concentration of 
butyric acid [51]. To increase the half-life of propionic acid, we have 
synthesized a pro-drug of propionic acid by esterifying two active 
propionic acids to a DEG linker. The pro-drug of propionic acid exerts 
excellent antimicrobial activity against S. aureus [49]. In this study, 
we demonstrate that a pro-drug of acetic acid (Ac-DEG-Ac) that is 
relatively less acidic and contains two acetic acid moieties esterified to 
a DEG linker efficiently suppresses the growth of fungi in the human 
dandruff (Figure 5). 

Esterases such as carboxylic esterase are capable of hydrolyzing the 
ester group of esterified pro-drug [52]. Although esterases are expressed 
by host cells, esterases in extracellular fluids or released from microbes 
have been identified [53-56]. Dead cells such as dandruff may also 
release esterases [57,58]. Future studies will determine if the Ac-DEG-
Ac is cleaved by esterases released from microbes and/or dead cells 
to increase the local concentrations of acetic acids, thereby becoming 
pharmacologically effective to decolonize the fungi in dandruff 
flakes. We also cannot rule out the possibility of anti-fungal activity 
of uncleaved Ac-DEG-Ac. Although it remains unclear how SCFAs 
impede the fungal growth, prior findings suggested that a lowered 
intracellular pH value of microbes is a lethal mechanism of SCFA 
[59]. Mounting evidence has demonstrated the anti-inflammatory 
effect of SCFAs [60]. The anti-inflammatory effect of SCFAs may 
serve to promote immunological tolerance to commensal bacteria 
via stimulation of immunosuppressive interleukin (IL)10 production 
of regulatory T (Treg) cells, maximizing the probiotic activities of skin 
commensal bacteria to outcompete the over-growth of pathogens. 

Thus, it is worth exploring the impacts of acetic acid and Ac-DEG-Ac 
on the host inflammatory responses and long-term homeostasis of the 
human skin microbiome.

Lack of selectivity and induction of resistance are central problems 
for many fungicides. Vaccines, although the actions are fairly specific, 
may become less potent for treatments of patients with significant 
underlying health matters such as diabetes, surgical intervention, and 
immune suppression. In contrast, probiotic treatments, which are 
relatively independent on patients’ health matters, have little or no 
interference with commensal microbes may complement fungicides or 
vaccines for treatments of fungal infections in the skin. 

Conclusion
Here, we envision that the interference of bacteria with the growth 

of fungi via fermentation naturally occurs in the human scalp skin. The 
use of endogenous molecules, such as SCFAs in fermentation products, 
as natural fungicides is concordant with evolutionary medicine and 
provides a new set of tools for fighting the fungal resistance.
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Figure 5: Inhibition of fungal growth in human dandruffs by acetic acid and 
Ac-DEG-Ac. A human dandruff flake was cut in half, and half was incubated 
with acetic acid in H2O (Ac) (a, b) or Ac-DEG-Ac (c, d) in DMSO for 3 h. The 
other half was incubated with H2O or DMSO as a control. Both chemical 
structures of acetic acid and Ac-DEG-Ac were illustrated. (b) The sizes (mm2) 
of fungal growth in dandruffs treated with acetic acid, Ac-DEG-Ac or their 
controls were quantified 4 days after placing dandruffs on MEA plates. At least 
three dandruff flakes per group experiment were used. ***P<0.001; **P<0.01, 
(two-tailed t-tests). Bars=2.0 mm.
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