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Introduction
Treatment of malignancies with allogeneic peripheral blood stem 

cell transplants (PBSCTs) from donors given granulocyte-colony-
stimulating-factor (G-CSF) has decreased relapse rates and improved 
or maintained survival compared to bone marrow transplants, 
although graft versus host disease (GVHD) still occurs [1]. For 
autologous stem cell transplants, the use of autologous PBSCT from 
G-CSF stimulation also in multiple studies shows faster recovery of
neutrophils and platelets, and fewer days to transfusion independence 
but with no differences in survival [2-5]. G-CSF mobilizes CD34+
hematopoietic stem cells from bone marrow into the blood. Further
enrichment of PBSCT by purification of CD34+ stem cells does
not generate superior clinical benefits and in some cases shows
slower white blood cell recovery with increased infections due to
poor immune reconstitution [6,7]. We hypothesize that the reason
why CD34+-enriched PBSCT are not more effective is because the
enrichment process leaves out G-CSF-mobilized stem cells from
another source, the spleen.

The adult spleen harbors throughout life stem cells expressing the 
Hox 11 oncogene, also known as Tlx1 [8]. Adult human bone marrow 
lacks Hox 11 stem cells [8]. Hox 11 is an embryonic transcription factor 
not found in bone marrow but persistse throughout life in the adult 
human spleen. Hox 11 was first identified in association with cancers 
including T cell acute lymphocytic leukemia but more recent research 
shows all humans harbor Hox11 expressing stem cells in their spleen 
throughout their life [8,9].

Hox 11 plays an important role in development of cell differentiation 
during which it activates a cascade of genes controlling cell fate and cell 

differentiation. In various human and animal models, Hox 11+ stem 
cells robustly differentiate into functional cells of multiple lineages, 
including cranial neurons, hematopoietic cells, pancreatic islets, bone 
and salivary glands [10]. The spleen also uniquely contributes to 
complete B cell memory [11]. The stem cells of the spleen allow for 
full maturation of immature transitional B cells into naive B cells. The 
later step is unique to splenic function since splenectomy results in 
similar accumulations of naïve B cells, reduction of memory B cells and 
well-known susceptibilities to select infections [12]. Interestingly, this 
immature peripheral phenotype was similar to bone marrow transplants 
before G-CSF. Our hypothesis about a splenic stem cell contribution 
to PBSCT also derives from the observation that G-CSF mobilizations 
induce splenomegaly in most donors and in rare, severe cases splenic 
rupture [13,14]. Splenomegaly might reflect dramatic G-CSF-induced 
Hox11+ stem cell proliferation. We examine by quantitative mRNA 
analysis whether G-CSF mobilizes Hox11+ stem cells and whether 
expression occurs in a cell population distinct from CD34+ cells. We 
need only assay for Hox11+ and CD34+ transcripts because these 
markers are unique to splenic and bone marrow stem cells, respectively 
[15,16]. Published data of the complete and unique proteomic signature 
of adult Hox11 stems has been reported [16].
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Materials and Methods 
Patients

Human peripheral blood lymphocytes (PBLs) used for this study 
were from the Core Center of Excellence in Hematology (CCEH) at 
the Fred-Hutchison-Cancer-Research Center or Massachusetts General 
Hospital (MGH) (FHRC-985.03C/MGH-2001P001379).

Methods

We extracted total RNA from PBLs from G-CSF treated or non-
treated donors using the RNeasy Mini kit (QIAGEN). The generated 
cDNA with the High Capacity cDNA Reverse Transcription Kit allowed 
quantitative real-time PCR using Power SYBR-Green and 7000 Real-
Time-PCR (Applied Biosystems). PBLs and the Beta-Actin housekeeper 
gene were used to normalize data and relative expression was calculated 
using the ddCT method. HOX11/TLX1 (GeneID; 3195) specific 
primers were forward sequence:5’-GGTTCACAGGTCACCCCTATC 
-3’ and reverse sequence: 5’- GTCTGCCGTCTCCACTTTGTC 
- 3’. The beta-actin (Gene ID;60) primers were forward sequence: 
5’-CATGTACGTTGCTATCCAGGC and reverse sequence:5’-
CTCCTTAATGTCACGCACGAT-3’. The CD34 (Gene ID;947) primers 
were forward sequence:5'-CTACAACACCTAGTACCCTTGGA-3', 
reverse sequence:5'- GGTGAACACTGTGCTGATTACA-3'. All 
primers were purchased from Custom DNA Oligos (Invitrogen). The 
ALL-SIL cell line (DSMZ) that expresses HOX11/TLX1 was a positive 
control for the TLX1 primers.

Statistical analysis

All data analysis to determine the statistical significance was 
calculated using an unpaired t-test. Statistical significance was viewed 
as a p value<0.05. Calculations were performed in GraphPad Prism-5 
software.

Results
Ten normal human donors provided untreated samples of 

peripheral blood lymphocytes (PBLs) and 18 donors provided samples 
of G-CSF-mobilized PBLs. G-CSF mobilized into the blood circulation 
both CD34+ bone derived stem cells (p=0.02) and Hox11+ derived 
splenic stem cells (p=0.000013) compared with non-mobilized PBLs 
(Figure 1). The relative increase of mobilized Hox11-derived splenic 
stem cells was very large in comparison to the CD34 stem cells (Figure 
1). To rule out the possibility that Hox11 is co-expressed on CD34+ cells 
after G-CSF treatment, we examined G-CSF-mobilized unmanipulated 
and CD34+-enriched samples (Figure 2). We found that the enrichment 
process only resulted in dramatically increased CD34+ expression 
(p<0.0001); these enriched cells do not express Hox11+ (P<0.02) (Figure 
2). Therefore G-CSF mobilizes two non-overlapping populations of 
stem cells.

Discussion
Our findings support the hypothesis that G-CSF mobilizes at least 

two distinct and non-overlapping populations of stem cells, CD34+ 
hematopoietic stem cells from bone marrow and Hox11+ stem cells 
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Figure 1: CD34+ and HOX11+ mRNA expression in peripheral blood lymphocytes (PBLs) from normal untreated donors (n=10) versus C-GSF-mobilized donors (n=18). 
G-CSF mobilizes both Hox11 and CD34+ stem cells into the circulation. (a) The left panel shows CD34+mRNA representing the means ± minus the standard errors of 
the means of the pooled samples. The right panel shows Hox11+mRNA representing the means ± minus the standard errors of the means of the pooled samples. (b) 
The left and right panels represent the individual data points of the subjects used for the pooled data in A.
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from the spleen. The very dramatic mobilization of splenic stem cells 
suggests that G-CSF’s well-known advantage over bone marrow for stem 
cell transplantation protocols may be due to two stem cell populations, 
including the less differentiated stem cells of the spleen with broad 
hematopoietic reconstitution abilities [9,11,12,16,17]. Indeed, prior to 
this data it was viewed that the common occurrence of splenomegaly 
after G-CSF treatment was an adverse outcome that could on rare 
occasions result in splenic rupture; instead it may well be the case the 
G-CSF is mobilizing immature stem cells, mature neutrophils and other 
beneficial splenic populations [18-20]. Since Hox11 splenic stem cells 
are known to have multi-lineage potential, represent the embryonic 
precursor to bone marrow stem cells and in adults also contain unique 
B cell populations for fighting infections and complete B cell memory, 
our findings may help clinicians improve PBSCTs for the treatment of 
cancer and potentially other diseases [21-23].
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