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Introduction
The human immunodeficiency virus (HIV) pandemic is now in its 

fourth decade. The WHO estimates that over 35.3 million people are 
living with HIV worldwide. With over 1.6 million deaths and 1.6 million 
infected in 2012, the HIV epidemic continues to be a major scientific 
challenge [1]. Many roadblocks have been overcome. The development 
of effective anti-retroviral therapy (ARV) has had a dramatic effect in 
the quality of life of those living with HIV and has curbed mortality. 
The large-scale implementation of anti-retroviral therapy in the 
developing world has had a major impact on the disease burden where 
it is needed most [2,3]. Of the estimated 6,300 new infections per day, 
95% occur in low-middle income countries. Though worldwide ARV 
coverage is at 55%, in certain low income areas of Africa coverage 
remains low at 16-35% [1]. The daunting number of new infections and 
the percentage of those without access to ARVs highlights the need for 
effective prevention strategies. Three decades later, vaccines remain the 
best hope, but the development of a safe and effective preventive HIV 
vaccine remains elusive. 

Since HIV was first identified in 1983 as the cause of AIDS, the 
scientific community has been relentlessly searching for a HIV vaccine. 
That year, the Secretary of Health and Human Services declared that a 
vaccine would be available within two years [4]. This first prediction 
was both hopeful and naïve. Researchers failed to recognize the 
complexities of HIV virology, the intricate relationship between HIV 
and the immune system, and the gaps in scientific knowledge necessary 
to resolve for vaccine development. Three decades of research have 
produced over 30 products which have been tested in over 85 trials, 
but no safe and effective vaccine has been found thus far [5,6]. Though 
this record may seem daunting or discouraging, these studies have 
broadened the understanding of HIV-1 and have brought the scientific 
community closer to the goal. Hope was further re-invigorated in 
2009 when the results of the RV144 trial were published. This study 
was unique, with a prime-boost vaccine that had an efficacy of 31.2% 
[7]. The modest protection shown in the RV144 trial was more than 

encouraging; it served as proof of concept that an effective HIV-1 
vaccine is indeed possible. With more understanding of the many 
obstacles in place towards an HIV vaccine, the scientific community 
is more confident than ever that this problem can be solved and will 
continue to move forward.

Understanding the Obstacles
The challenges in the development of a prophylactic HIV-1 vaccine 

are many and are unprecedented in the history of medicine (Table 
1). First and foremost are the biologic properties of HIV-1 itself, a 
retrovirus with broad genetic variation and worldwide viral diversity. 
The complex interaction between HIV-1 and the human immune 
system and the subsequent inability of the immune response to clear 
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Viral factors
• Extensive viral clade and sequence diversity
• Early establishment of latent viral reservoirs 
• Viral evasion of humoral and cellular immune responses 
• Immune correlates of protection unclear
• Antibody responses typically type-specific 

Research limitations 
• No method yet exists to elicit broadly reactive NAbs
• Limited interest from the pharmaceutical industry
• Funding Challenges

Table 1: Challenges in the Development of a preventive HIV-1 Vaccine.
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the infection is another major obstacle as well. Researchers have been 
limited by the lack of an ideal animal model. The current animal model 
is imperfect and does not translate smoothly to human infection. 
Despite recent breakthroughs, funding has stagnated, decreasing the 
capacity to conduct research.

Before expanding on these obstacles, one must understand key 
interactions between HIV-1 and the immune system. Once infected 
with HIV, a burst of viremia occurs [8]. Latently infected, resting 
CD4+ T cells are established early during primary infection. HIV-1 
specific CD8+ and CD4+ T cells are created as a consequence of this 
initial viremia, and HIV-1 viral load subsequently declines via CD8+ 
T-cell mediated responses [9]. Antibodies appear between weeks 6 
to 12. However, the virus is able to escape recognition due to genetic 
changes in the viral envelope. As the virus escapes both the humoral 
and cell-mediated immune responses, the viral load increases and 
damage to the immune system progresses [10]. Though long-term 
non-progressors and elite controllers have been identified, no human 
has been able to clear HIV-1 infection without intervention [11]. Even 
with potent ARVs and undetectable HIV-1 levels in the blood, HIV-
1 persists in reservoirs within multiple organ systems, including the 
reticuloendothelial system and is never fully eradicated [12]. Thus, once 
infection is established, the high replication and mutation rates present 
insurmountable obstacles to the immune system as it attempts to clear 
the infection.

The broad diversity of HIV-1, with multiple subtypes, mutations, 
and groups, poses a great challenge towards vaccine development. 
Constant mutations have caused a variety of different groups and 
clades. Vaccines would need to effectively protect against this broad 
viral diversity and protect against infection by all clades. However, 
these clades differ by about 25-35% in env sequence and approximately 
15% in gag sequence [5]. Since the discovery of the virus in 1983, 
extensive research on the genome and structure of HIV has improved 
understanding of HIV immunopathogenesis [13]. The broad genetic 
diversity of the virus is a major challenge for the immune system and 
for the scientific community. Each virion contains two copies of the 
single stranded RNA genome within its envelope [14,15]. This allows 
for recombination and creation of another level of diversity. The 
recombinant progeny are considered circulating recombinant forms 
if isolated in multiple people with no direct epidemiologic linkage. 
Otherwise, they are considered unique recombinant forms [15]. These 
differences contribute to the complexity and difficulty in development 
of a broadly active HIV vaccine. The inability of the immune system 
to naturally clear HIV-1 poses a major roadblock and until recently, 
no immune correlates of protection in humans existed. The classic 
paradigm for creating vaccines via subunits of the viral envelope have 
not provided a safe and effective vaccine despite dozens of trials on 
envelope peptides [8,16]. HIV envelope proteins gp120 and gp41 are 
necessary for binding and fusion with the host cell membrane. These 
proteins would be ideal targets for vaccine design. However, conserved 
viral epitopes that are exposed on monomeric envelope proteins 
become hidden within the envelope trimer, only becoming accessible 
during the very rapid fusion process. Envelope proteins are so heavily 
glycosylated that neutralizing antibodies have to overcome significant 
steric hindrance to be effective [10]. There are variable regions on the 
surface of gp120 that would be key targets for antibody production, but 
said antibodies have low immunogenicity and limited breadth, making 
them ineffective from a vaccine perspective [17].

Another major effort in HIV vaccine development is the use ofanimal 
models. Non-human primate (NHP) models challenged with simian 

immunodeficiency virus (SIV) and simian-human immunodeficiency 
virus (SHIV) have been used to study possible vaccine targets [18]. 
The SIVs are retroviruses found in non-human primates [19,20]. 
When SIV infects species other than their natural hosts, such as the 
SIV of sooty mangabeys infection of rhesus macaques, simian acquired 
immunodeficiency syndrome develops [19,21]. Parts of the HIV and 
SIV genomes have been combined to create chimeric viruses known as 
SHIV. This model has been instrumental for the study of HIV vaccines. 
Though NHPs and simian viruses have vast similarities between 
humans and HIV, small differences have big consequences. Thus, many 
vaccine targets and strategies that are found to be effective in NHPs 
have failed in humans [18]. The impact of inter-species differences 
poses a major challenge in the applicability of these models to humans. 
Though studies of NHPs and SIV/SHIV have brought forth significant 
contributions, they have failed to reliably predict human responses and 
remainonly a tool with limited ability to inform vaccine development.

Finally, decreased funding has reached HIV vaccine research 
as well and has posed a challenge in recent years. Funding for HIV 
vaccines decreased by 100 million in 2008 [22,23]. This was the first 
decrease in over three decades of research. Since then, funding has 
remained stagnant. Researchers worldwide responded with attempts 
to increase efficiency by forming collaborations to better utilize the 
collective knowledge and research infrastructure of organizations and 
institutions globally. At 847 million US dollars in 2012, funding for HIV 
vaccines is by no means insignificant, but neither is the research task at 
hand [22,23]. The trend towards decreased funding is discouraging and 
further decreases will without a doubt have a negative effect in vaccine 
research endeavors.

Goals of a Successful Vaccine
The primary aim of HIV vaccines is to prevent infection. After the 

failure of early vaccine studies, some researchers altered their aim to 
create “therapeutic vaccines” that would control established disease 
or alter disease progression in previously HIV-1 infected individuals. 
In order to achieve either aim, a successful vaccine must trigger 
appropriate responses from the host immune system. The traditional 
strategy in vaccine development has been to trigger expression of 
broadly neutralizing antibodies. There are instances when humoral 
immunity is not sufficient, and cell-mediated responses are necessary 
to control infection. Cytotoxic T cells limit the spread of HIV by killing 
infected cells, either through targeted killing pathways or by triggering 
apoptosis via secretion of granzymes and perforin [24,25]. In the case 
of HIV, a successful vaccine is one that would ideally be able to recruit 
both arms of the immune system to achieve its primary aim.

Types of Vaccines
Researchers have tried multiple different types of HIV vaccines 

with varying success. A live, attenuated virus was one of the earliest 
HIV vaccines attempted. This method, which was successful for 
multiple other viruses, including measles, rubella, and polio, involves 
altering the viral genome in order to decrease its pathogenicity. In the 
case of HIV, mutant viral strains that deleted multiple base pairs in the 
regulatory protein nef were studied in SIV animal models. At first, these 
viruses seemed to induce protective immunity against challenge with 
wild-type, pathogenic SIV 2.5 years after immunization; neutralizing 
antibody titers were very high at infection, no animals developed 
antigenemia and all maintained very low viral loads [26]. The perceived 
success of this virus was short-lived as other strains, built in similar 
manner, were pathogenic in adult and neonatal macaques and 
eventually progressed to AIDS [27]. In another experiment, monkeys 
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were vaccinated with a SIV strain that contained a 12 base-pair deletion 
of nef. Surprisingly, several of these monkeys developed elevated viral 
loads and disease progression. Further analysis revealed the original nef 
deletion had mutated to repair the inframe deletion and revert back to 
the parental strain, thereby explaining the pathogenicity of the vaccine 
and underscoring the danger of using a live-attenuated vaccine [28,29]. 
Similar findings are mirrored in the history of individuals who were 
naturally infected with nef deleted HIV strains [30]. These individuals 
were asymptomatic for several years after acquiring HIV infection, 
but ultimately the original donor of blood products and 3 out of the 6 
recipients developed late-onset immunosuppression and opportunistic 
infections consistent with AIDS [29-31] Taken together, these findings 
questioned the safety and efficacy of a live-attenuated HIV virus and no 
further work was performed.

Heat-inactivated or killed whole vaccines are very useful when the 
parameters of immunity are ill defined, as in the case of HIV. The best 
example of a successful killed whole virus vaccine is Jonas Salk’s polio 
vaccine [32], but this vaccine is haunted by the potential to cause active 
infection through immunizing with incompletely inactivated virus 
[33]. Still, a whole killed virus was created and tested in individuals 
already infected with HIV as a method to slow disease progression. 
The vaccine, called Remune, is killed and depleted of surface envelope 
expression. It showed promise in early human studies as it was shown 
to increase immune responses, but effects on surrogate markers and 
viral DNA were inconsistent. A multicenter double-blind randomized 
controlled trial investigated the utility of combining Remune with 
anti-retroviral therapy and did not observe any effect on disease-free 
survival [34]. Remune continued to be investigated as an adjunctive 
therapy in therapeutic vaccination models. While no difference was 
seen in viral load set point, viral load rebound was slightly delayed in 
vaccinated individuals [35]. Recently, Immune Response BioPharma, 
who manufactures Remune, announced they are submitting a biologic 
license application to the FDA as a first step to bringing the vaccine to 
market [36]. It will be interesting to see what the future holds for this 
vaccine.

Additional vaccine types either present specific target viral proteins 
(e.g. recombinant gp120 envelope), encode plasmid DNA to elicit 
antigenic responses, or utilize other viruses as vectors to deliver target 
viral genes to immune cells. Each of these methods has had varying 
degrees of success and has been used, either alone or in combination, 
in human vaccine trials.

Clinical Trials
Multiple studies have explored the use of vaccines against HIV-

1 envelope proteins gp160 and gp120. These studies followed a 
“traditional” strategy to trigger expression of broadly neutralizing 
antibodies. Phase I studies were completed to examine the safety and 
immunogenicity of viruses in “low risk” populations. These studies 
showed the vaccines were well tolerated and induced high rates of 
binding antibodies after just 3 doses [37-39]. However, these responses 
were mainly type-specific against the homologous, tissue-culture 
derived virus and were not protective against primary isolates [40,41]. 
The AIDS Vaccine Evaluation group (AVEG) then further explored 
the utility of such vaccines in a phase II double-blinded, adjuvant-
controlled trial with two gp120 vaccines designed against X4-tropic 
clade B viruses [42]. After three doses of vaccine, 87% of study subjects 
developed neutralizing antibodies that persisted in 59% of subjects after 
2 years. Notably, lower antibody responses were seen in IV drug users 
and heterosexual partners of HIV (+) individuals [42]. Despite being 
proven as safe vaccines, these phase I trials revealed antibody responses 

were too specific to the particular HIV strain and were inadequate to 
neutralize primary HIV isolates.

These earlier studies laid the groundwork for two large phase III 
trials. AIDSVAX B/B vaccine was a bivalent recombinant gp120 vaccine 
against two clade B isolates; MN, a tissue culture derived strain; and 
GNE-8, a primary isolate. VAX 004 was a randomized, double blind 
study that examined whether this vaccine could protect those at risk 
for sexual acquisition of HIV. The hypothesis was that antibodies 
against gp120 would bind, neutralize and eliminate HIV virions before 
infection occurred. Over 5000 men and 300 women were enrolled in the 
study. After 3 years, the rate of HIV infection was 6.7% in the vaccinated 
group and 7% in the unvaccinated group [43,44]. VAX 003 was a similar 
study utilizing AIDSVAX B/E, a vaccine with gp120 derived from 
a clade B isolate (MN) and a primary clade E isolate (CM244), and 
examined HIV acquisition in IV drug users in Thailand [45]. As before, 
the rate of HIV infection was similar in vaccinated and unvaccinated 
groups. Additionally, HIV (+) persons who received the vaccine did 
not demonstrate any differences regarding viral loads, CD4 counts or 
time to disease progression. These studies showed an envelope only 
vaccine was not efficacious to prevent HIV infection in these high-risk 
populations. The failure of these trials resulted in a paradigm shift in 
vaccine development, focusing the research effort primarily on vaccines 
that could induce cell-mediated immune responses as opposed to 
humoral responses.

DNA vaccines encode plasmids that do not integrate into the host 
cell genome, but rather remain episomal and act as expression vectors 
for antigenic viral proteins to induce cellular immunity [5]. AVEG and 
the NIH Vaccine Research Center (VRC) both created DNA vaccines 
that express HIV structural proteins from multiple different viral clades 
[46,47]. While these vaccines elicited substantial responses in mice and 
non-human primates, they were poorly immunogenic in humans unless 
they were administered with an Adenoviral vector boost [46,48,49].

Considerable research has focused on live viral vectors as a method 
for antigen presentation in order to induce humoral immunity and 
HIV-1-specific CD8+ T lymphocyte responses. The most well studied 
viral vectors include poxviruses, specifically vaccinia and canarypox, as 
well as adenovirus.

Vaccinia vectors were studied very early on in vaccine development. 
Hu, et al. first described insertion and expression of HIV envelope protein 
from a vaccinia vector in 1986 [50]. Since then, vaccinia vectors have 
been created that express HIV env, gag, and pol genes. Although they did 
induce antibody and T cell responses in animal models, such findings 
were not replicated in human subjects and the vaccine did not protect 
NHPs against HIV infection [51,52]. Additionally, vaccinia vectors 
have the potential to cause serious illness in immunocompromised 
individuals and skin reactions in persons with eczema. Therefore, 
other attenuated vaccinia strains were developed, namely the Modified 
Vaccinia Ankara (MVA) and the NYVAC (vP2010) viral strains. Both 
vectors have good safety profiles and have been shown to elicit immune 
responses in phase 1 testing [53-56]. However, immunogenicity was 
enhanced in subjects who were “primed” with a DNA vaccine prior to 
receiving the vaccinia virus “boost.”

While vaccinia vectors continue in development, most attention 
had been diverted to adenovirus and canarypox vectors and the three 
large phase IIb trials that utilized each viral vector, namely the STEP 
vaccine trial, the HVTN 505 trial and the RV144 trial.
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Dark Days: Adenovirus and the STEP Trial
Adenoviral vectors are strains that have been made replication 

defective by mutations and deletions of the adenoviral genome. HIV 
constructs are then inserted in place of the deleted adenovirus genes 
and an exogenous promoter controls their expression. There are two 
main adenoviral vectors. The NIH Vaccine Research Center (VRC) 
vector (serogroup 5, Ad5) expresses HIV gag and pol from clade B 
and env from clades A, B, and C; while the Merck MRKAd5 vector is a 
compilation of 3 adenoviruses that express gag, pol, and nef from clade B 
alone [6]. Both vaccines were able to induce humoral and cell mediated 
responses in animal models that could be enhanced by priming with 
DNA vaccines. However, they were unable to prevent infection. Instead, 
they modulated disease progression in animals. Vaccinated macaques 
had lower viral loads and did not progress into AIDS during study 
follow-up [57,58].

In 2003, researchers began human trials to evaluate the 
immunogenicity and efficacy of the MRKAd5 HIV-1 vaccine. The 
vaccine was found to be safe and capable of inducing T cell responses 
in a phase 1 trial [59]. As expected, study subjects with pre-existing 
immunity to Ad5 had attenuated responses, but this effect was partially 
overcome by higher doses of vaccine. With this promising result, a 
phase IIb study was launched in late 2004. 

The STEP study was a test-of-concept study that enrolled 3000 
HIV-seronegative participants from the Americas, Australia and 
the Caribbean and randomized them to receive either three doses of 
MRKAd5 HIV-1 vaccine or placebo [60]. The goal was to demonstrate 
either decreased rates of infection or HIV viral load in vaccinated 
individuals. As seen in the phase I trial, the vaccine induced cell-
mediated responses in study subjects. Surprisingly, this was not 
sufficient to prevent infection. In fact, HIV infection and viral loads 
were either no different or higher in vaccinated subjects as compared 
to placebo controls. Subset analysis suggested that subjects with prior 
adenovirus immunity and/or who were uncircumcised were at highest 
risk for HIV-1 acquisition. A data-safety monitoring board concluded 
the study early due to evidence of vaccine futility at interim analysis. 
A parallel study, the Phambili study, examining the MRKAd5 HIV-1 
vaccine in South Africa, where clade C is predominant, was stopped 
during enrollment due to the results of the STEP study and the 800 
persons already vaccinated were followed. Initial analysis showed a 
higher rate of HIV infections in the vaccinated group, but it was not 
considered to be statistically significant [61]. However, a recent long-
term follow-up of the Phambili study participants found a higher 
incidence of HIV-1 in vaccinated study subjects that was statistically 
significant and independent of number of vaccinations received, gender, 
circumcision status and Adenovirus serostatus [62]. As adenoviral 
vectors were considered to be the most immunogenic viral vectors 
available, the HIV-1 vaccine community struggled to understand these 
results. 

After careful analysis of the STEP Study results, a DNA prime/
rAd5 boost vaccine trial utilizing the VRC adenovirus vector was 
conducted (HVTN 505) [63]. This study utilized a DNA prime that 
contained plasmids expressing 6 HIV proteins; Gag, Pol and Nef from 
clade B and Env from clade A, B and C. Study subjects also received 
an adenoviral vector vaccine, expressing Gag-Pol fusion protein from 
clade B and Env glycoproteins from clades A, B, and C. It was thought 
that this vaccine regimen would induce sustained cellular and humoral 

immune responses against multiple circulating HIV strains. In this 
study, all subjects were men who have sex with men, at high-risk for 
HIV acquisition, but were required to be circumcised and have low pre-
existing Ad5 antibody titers thereby eliminating potential confounders 
from the STEP study. There were 2500 individuals enrolled at sites 
across the United States. Once again, the DNA prime/rAd5 boost 
regimen induced cellular and humoral immune responses, but these 
were insufficient for protection against HIV acquisition. This study also 
concluded early when interim analysis demonstrated vaccine futility. 
Although not statistically significant, there were more HIV-1 infections 
in the vaccinated group than in the placebo group [63]. It remains 
unclear why individuals who received an Ad5 HIV vaccine appear to 
be at increased risk of acquiring HIV-1 infection. Recent data suggests 
Ad5 vaccination increases the concentration of activated CD4+ T cells 
in gut mucosa, suggesting that increased HIV infection may be due 
to the very immune response that the vaccine aims to elicit [64]. The 
future use of adenoviral vectors in HIV vaccine development will likely 
proceed with caution if at all.

A door closes… and a window opens

Canarypox virus (ALVAC) is an avian poxvirus that undergoes 
an abortive replication cycle in mammalian cells. Multiple constructs 
expressing different HIV proteins have been tested in search of a HIV-1 
vaccine. This vector was capable of inducing antibody and cytotoxic T 
cell responses, but these responses were relatively weak and short-lived 
[65-67]. As adenoviral constructs prompted more sustained responses 
in early studies, ALVAC vectors were largely abandoned until a team of 
researchers from the Thai AIDS Vaccine Evaluation Group combined 
ALVAC with the subunit vaccine, AIDSVAX B/E (which had failed in 
the Vax003 trial) in a “prime and boost” model of vaccination.

The RV144 trial, as this study is now known, initially strongly 
discouraged by the scientific community, turned out to be 
abreakthrough in HIV vaccine development. The study itself was 
designed as a community-based, randomized trial, examining the effect 
of HIV vaccination on the general population, not just those at high risk 
for infection [7]. As a result, over 16,000 individuals were enrolled and 
over 12,000 completed all study-related visits. When the results were 
tabulated, this vaccine regimen demonstrated 31% efficacy in modified 
intention-to-treat analysis. This study is not without limitations. As 
critics have noted, the efficacy was highest early on and in those at 
lowest risk for HIV infection [68]. However, this was the first time a 
HIV vaccine demonstrated any, albeit limited, efficacy in human trials.

Since 2009, many researchers have sought to understand the 
protective effect of the ALVAC/AIDSVAX vaccine. It is thought that the 
study of these correlates of protection may hold the keys to an effective 
HIV vaccine. Interestingly, the RV144 vaccine did not induce either 
broadly neutralizing antibodies or cytotoxic CD8+ T cell responses. 
Instead, the vaccine induced CD4+ T cell and antibody-dependent 
cytotoxicity and weakly neutralizing antibodies [69-72]. Specifically, 
individuals with higher plasma concentrations of immunoglobulin G 
(IgG) antibodies specific for the V1V2 loop of gp120 had lower rates 
of HIV infection, while high levels Env-specific IgA antibodies directly 
correlated with HIV infection [73]. Additional studies suggested that 
HIV-1 envelope C1 antibody responses were the dominant antibody-
dependent cellular cytotoxic response responsible for protection 
[74]. Recently, other studies have explored host genetic factors that 
contributed to the protective vaccine effect: for example, vaccine 
efficacy was higher in individuals with the HLA A*02 allele in the 
RV144 trial [75]. Thus, the RV144 trial opened many more windows 



Citation: Barry SM, Mena Lora AJ, Novak RM (2014) Trial, Error, and Breakthrough: A Review of HIV Vaccine Development. J AIDS Clin Res 5: 359. 
doi:10.4172/2155-6113.1000359

Page 5 of 10

Volume 5 • Issue 11 • 1000359
J AIDS Clin Res
ISSN: 2155-6113 JAR an open access journal 

of discovery that may ultimately lead to the development of an effective 
HIV vaccine (Table 2).

A Way Forward
In the past decade, advances in research have shown multiple paths 

forward. These paths are diverse, and include newly identified broadly-
neutralizing antibodies and the possible use of monoclonal antibodies. 
As understanding of HIV-1 infectionincreases, new hope has been 
placed in older strategies such as gp120 subunit vaccines and less on 
the use of cytotoxic vaccines although work in this area continues.

Broadly neutralizing antibodies

The majority of HIV infected individuals will mount a humoral 
immune response in the weeks to months following HIV-1 infection. 
This response, however, is usually strain-specific and does not confer 
immunity but instead drives viral mutation [86,87]. Over time, 
approximately 10-30% of people will develop broadly neutralizing 
antibodies (BNAbs) but only ~ 1% will produce antibodies with 
extensive breadth and potency (“elite neutralizers”) [86,88]. This 
process can take between 2 to 4 years. As a result, most HIV infected 
persons do not benefit from their neutralizing antibodies, partly due 
to the presence of viral escape mutants and partly due to waning 
humoral immune response [86,89]. Recent studies have emphasized 
the importance of BNAbs in blocking infection by chimeric simian 
human immunodeficiency virus in non-human primate studies and 
preventing HIV-1 viral load rebound after cessation of antiretroviral 
therapy in humans [90-96]. These studies led to an abundance of 
research into identifying BNAbs with the rationale that these naturally 
occurring BNAbs could be exploited for vaccine development and 
provide clues toward immunogen design [97]. Several BNAbs have 
been identified and are summarized in Table 3. These antibodies 
target multiple epitopes in HIV envelope proteins, some requiring 
glycosylation or quaternary structure for neutralization. Recently 
Pfeifer et al. determined that resistance to BNAbs is associated with 
coreceptor usage, suggesting the importance of viral tropism to vaccine 
development [98]. To date, no vaccine has been able to elicit formation 
of these BNAbs, but considerable research is still ongoing [99]. A recent 
study suggested that BNAbsmay have a role in immunotherapy of HIV-

1 infection. Barouch et al. showed a single infusion of a cocktail of three 
BNAbs conferred a significant decline in HIV-1 viral load within 7 days 
and reduced proviral DNA in peripheral blood, gastrointestinal mucosa 
and lymph nodes without the development of viral resistance in rhesus 
macaques [100]. Hence, BNAbs may be important for both preventive 
and therapeutic strategies and provide a pragmatic way forward.

Nonneutralizing antibodies

There are aspects of BNAbs that add to their complexity and may 
explain the difficulty in inducing their expression after vaccination. 
Sequencing of isolated BNAbs revealed extensive somatic hypermutation 
and long complementarity determining loops, suggesting a long 
maturation process is necessary for antibody effectiveness [86,101,116]. 
As a result, some researchers have explored the potential impact of 
“conventional” antibodies on the HIV epidemic. Viral neutralization 
is thought to require antibody binding to the envelope trimeric spike, 
preventing engagement with receptor or co-receptor, or preventing 
conformational changes required for viral fusion. Non-neutralizing 
antibodies (NoNAbs) bind to other proteins on surface of HIV virions 
or infected cells (i.e. envelope monomers or gp41 stumps) via Fab 
domains and present to antigen-presenting cells or NK cells via Fc 
domains, causing viral inhibition through phagocytosis or antibody-
dependent cellular cytotoxicity (ADCC) [116-119]. Over the years, 
multiple studies have implicated a role for these NoNAbs in abrogating 
infection in vitro and in animal models [88]. However, the results of the 
RV144 trial renewed interest in this field when it was determined that 
vaccine protection was not due to induction of BNAbs, but rather of 
NoNAbIgG against V1/V2 and C1 domains of gp120 [73]. Interestingly, 
researchers observed an inverse relationship between risk of infection 
and expression of plasma IgA antibodies. In study participants, 
monoclonal Abs that mediated ADCC were specific for the conserved 
C1 region in gp120. Vaccine-induced plasma IgA was also specific 
for the C1 region and would compete with IgG, thereby preventing 
IgG-mediated ADCC from occurring and potentially explaining the 
increased rates of HIV infection in participants with high IgA antibody 
levels [120,121]. Since secretory IgA antibodies have a significant 
protective effect in mucosal immunization by binding virions in the 
lumen and limiting HIV transmission, these findings suggest a dual 

Trial Name Candidate Vaccine Location Population Outcome References
Vax 004 AIDSVAX B/B USA MSM, high risk women No efficacy [43,44,76,77]
Vax 003 AIDSVAX B/E Thailand IV drug users No efficacy [45]

HVTN 502 / STEP MRK Ad5 gag/pol/nef B Australia, Caribbean, 
the Americas

MSM, high risk men and 
women 

No protection, transient increased risk. Study 
terminated early [60,78-81]

HVTN 503 / 
Phambili MRK Ad5 gag/pol/nef B South Africa Men and women Study terminated due to STEP trial findings. Post-hoc 

analysis indicating increased risk with vaccine [61,62]

HVTN 505 VRC DNA/rAd5 USA Circumcised men and 
MTF transgender Stopped for futility, participants are being monitored [63]

RV 144 ALVAC / AIDSVAX B/E Thailand General Public 31% protection against HIV infection, no effect on 
plasma viral load

[7,69-75,82-85]

Table 2: Summary of Phase IIb and Phase III HIV Vaccine Trials.

Target Site Antibodies Glycan 
Dependent

Quaternary 
Structure Dependent Coreceptor association References

gp120 CD4 binding site b12, NIH45-46, VRC01, PGV04, 3BNC117 No No Unknown [101-104]
gp120 outer domain 2G12, PGT 135-137 Yes No Unknown [105,106]
gp120 V3 PGT 121-123; PGT 125-128, PGT 130-131 Yes No PGT 128 selects X4 tropism [98,106]
gp120 V1V2 PGT 141-145; PG9/PG16; CH01-04 Yes Yes PG9/PG16 : R5 tropic [98,106-108]
gp41 MPER 2F5; 4E10; 10E8 No No Unknown [109-113]

gp120:gp41 cleaved trimer PGT 151-158 Yes Yes [114,115]

Table 3: Broadly Neutralizing Antibodies against HIV.
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role for IgA based on localization, structure and epitope [116,122]. 
The RV144 findings have been replicated in a macaque model, again 
with approximately 30% protection. Subsequent animal studies showed 
that NoNAbs with ADCC potential were unable to prevent infection 
of macaques following high-dose SHIV challenge, but did decrease 
subsequent viral replication and dissemination [117,123]. Although 
BNABs may be more effective, considerable evidence suggests there 
may be a role for NoNAbs in an effective HIV vaccine.

Gp120/gp140

The HIV envelope protein has long been a target for vaccine 
design, and yet antibodies against monomeric gp120 have not led to 
an effective vaccine. One possible explanation is that gp120 exists in 
a trimeric envelope (Env) spike with 3 gp120 and 3 gp41 proteins. 
Unfortunately, the instability of this protein has led to significant 
difficulties in creating synthetic Envtrimers. Significant attention is 
currently being directed to the envelope spike complex (gp140, lacking 
the transmembrane domain of gp41), as isolated from HIV infected 
individuals with BNAbs. In animal studies, gp140 induced higher 
titers of anti-gp120 specific Abs and neutralizing Abs than monomeric 
gp120 [124]. In late 2013, researchers announced the creation of a 
synthetic Envtrimer BG505 SOSIP.664 that induced BNAbs but not 
non-neutralizing Abs [125]. Subsequently, researchers from the HIV 
Vaccines Trial Network published the results of a phase IIa study 
where study participants were vaccinated with a DNA prime and MVA 
boost that produces noninfectious virus-like particles (VLPs) with 
Envtrimers on the VLP surface [126]. Although this vaccine regimen 
induced antibody and T cell responses, such responses waned within 3 
months after completing immunization. In 2013, Baden et al. described 
a novel HIV vaccine prototype that encoded gp140 in an adenovirus 
26 vector (Ad26.ENVA.01). Early studies showed the Ad26 vector was 
safe and immunogenic, suggesting it may be an acceptable alternative 
for adenovirus 5 [127]. Recently, additional efforts demonstrated that a 
single intramuscular injection of Ad26.ENVA.01 elicited both systemic 
and mucosal immune responses [128]. Although preliminary, these 
studies reinforce the concept that Envtrimers/gp140 may serve as 
important immunogens for the next generation of vaccine development. 

Cytotoxic T cells

Major HIV vaccine trials in the past two decades have tested 
immunogens that induce cytotoxic T cell responses. Significant progress 
has been achieved since the first attempt, where a recombinant vaccinia 
virus vector was used [129]. This vector was not optimal, as it escaped 
inactivation and caused three deaths. Safer vectors have been used 
since, such as pox-based, highly attenuated strains such as Vaccinia 
Ankara, Copenhagen (NYVAC) and Canarypox (ALVAC) [8]. With 
safer vectors and the prime-boost method used in RV144 as the first 
vaccine with limited efficacy, there may still be a future for vaccines that 
induce cell-mediated responses [7]. Replicating viral vectors such as 
Measles, Vesicular stomatitis virus and Cytomegalovirus (CMV) may 
hold the key to a sustainable cytotoxic response. A study using rhesus 
cytomegalovirus (RhCMV) vectors established indefinitely persistent, 
high-frequency, SIV-specific effector memory T-cell responses at 
potential sites of SIV replication in rhesus macaques. It was able to 
control highly pathogenic SIV infection early after mucosal challenge 
[130]. Halting viral replication at early stages of infection via eliciting 
cytotoxic responses in mucous membranes may halt acquisition of the 
virus at this crucial initial stage. Persistent vectors such as CMV may 
be able to elicit strong and persistent cytotoxic responses [130,131]. 
Recent evidence also points to the possibility of this approach to clear 
reservoirs of lentivirus as well [132].

Mosaic and conserved sequence vaccines

The global strain diversity of HIV requires an effective vaccine to 
elicit broad neutralizing responses from the host immune system. Since 
no vaccine has been successful in achieving this goal to date through 
conventional methods, some researchers developed a novel strategy 
wherein they use bioinformatics to guide vaccine development. Mosaic 
vaccines contain several proteins or their corresponding genes and 
are designed to include the most common T cell epitopes and those 
likely involved in escape variants, and exclude rare epitopes, in order to 
trigger cytotoxic T cell responses [133]. Conserved sequence vaccines 
create an immunogen from the highly conserved regions of the HIV 
consensus proteome, thereby forming a vaccine that would be effective 
against all HIV viral clades [134]. Both methods show some promise 
in that they are able to induce T cell responses in animal models [135-
137]. Recently, Barouch et al. [138] investigated whether mosaic Env/
Gag/Pol immunogens would protect NHP from repeated intrarectal 
challenge with heterologous SHIV viruses. They observed robust 
immune responses in vaccinated monkeys and this correlated with 
a low rate of SHIV infection following the first intrarectal challenge. 
However, this protective effect peaked at approximately 90% and waned 
with repeated challenges. A significant limitation of this study was that 
only one SHIV strain was investigated, so it remains unclear whether 
mosaic vaccines could protect against multiple HIV clades as suggested 
[138,139]. 

Vectored immunoprophylaxis

An alternative approach to inducing humoral immunity is to cause 
expression of BNAbs via vectored immunoprophylaxis (VIP). In this 
technique, viral vectors deliver genes encoding the BNAbs to cells 
directly, and the host’s immune system then produces the antibodies 
internally. Animal studies showed that humanized mice injected with 
adenovirus-associated viral vectors encoding various different BNAbs 
were protected against intravenous or repeated intravaginal challenges 
with high doses of HIV [140,141]. This technique has only been studied 
in early animal models, but there is a proof of principle that is worthy 
of further investigation.

Immune tolerance

Perhaps the most intriguing vaccine strategy is one that does 
not require antibody production at all, but rather attempts to trigger 
tolerance of HIV infection. Since resting CD4+ T cells are resistant to 
HIV infection, it is thought that a tolerogenic vaccine could prevent 
new infections from occurring. In 2012, Lu et al. first described using 
an oral vaccine combination of inactivated SIV and commensal bacteria 
to induce CD4 T cell unresponsiveness [142]. This vaccine strategy 
was successful in preventing SIV infection of 15 out of 16 macaques 
following intrarectal challenge, without triggering antibody or cytotoxic 
T cell responses. Instead, protection was due to the presence of MHC-
Ib/E-restricted CD8+ regulatory T cells that prevented activation 
of CD4+ T cells. These findings were replicated in a larger study in 
Chinese macaques, where oral or intravaginal immunization protected 
the animals from SIV infection via intravenous or intrarectal viral 
challenge. This protection did not wane after repeated challenge, was 
effective 48 months after vaccination and was cross protective against 
other SIV strains [143]. This research group plans on proceeding to 
phase I human trials soon.

Conclusions
Finding a safe and effective HIV-1 vaccine remains one of the highest 

research priorities. A preventive HIV vaccine would curb this devastating 
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pandemic and have a significant public health impact. Decades of 
research have led to new discoveries in the immunopathogenesis 
of this infection, but have not yet yielded a highly effective vaccine. 
Recent advances suggest that preventive HIV vaccines are possible, 
and even likely. The obstacles and challenges to vaccine development 
and the urgent need for effective HIV prevention strategies have led 
to the development of a number of prevention approaches beyond 
the traditional preventive vaccines. These approaches will need to be 
incorporated into future vaccine trials design since they are already in 
use and vaccine trials without the use of these methods may pose ethical 
issues. A future HIV preventive vaccine may target multiple immune 
pathways and involve strategies such as cytotoxic vaccines, envelope 
targets and antibodies such as BNAbs or MAbs. Even a vaccine with 
moderate efficacy would have a major public health impact if combined 
with a comprehensive prevention package that includes counseling, 
barrier methods and PrEP. The path in vaccine development to this 
point has been difficult, and portends a still challenging road ahead, 
but there has been unmistakable progress, and failure is not an option.
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