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Abstract
Hepatitis C virus (HCV) infection represents a great public healthcare challenge as it affects nearly 170 million 

individuals worldwide. Therefore, the deep investigation of the mechanisms involved in the pathogenesis of chronic 
hepatitis induced by HCV is a crucial step in the design of novel targeted therapies for the treatment of this condition. 
However, techniques of molecular biology to characterize HCV proteins can suffer of intrinsic limitations due to high 
mutation rates of the virus genome.

In this study, we propose a novel strategy to synthesize a viral cDNA sequence corresponding to the p7 gene in 
HCV genome-free conditions. Our approach consists of a three-steps polymerase chain reactions (PCRs) by using 
a set of four large overlapping synthetic oligonucleotides aimed to separately amplify both 5’ and 3’ ends of the p7 
gene; 5’ and 3’ products, overlapping themselves, were then used as a template in a third PCR amplification in order 
to get a full-length p7 cDNA.

Our methodology represents an interesting proof-of-principle as it allows for the safe manipulation of short viral 
genes. Moreover, this new technique overcomes the elevated genetic variability of HCV genomes without affecting 
the antigenic characteristics of the putative viral protein. 
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Introduction and Study Design
Hepatitis C virus (HCV), a human pathogen affecting nearly 3% 

of the world’s population [1], is the cause of chronic liver diseases that 
may lead to cirrhosis and hepatocellular carcinoma [2]. Techniques 
of molecular biology, such as polymerase chain reaction (PCR) 
and nucleotide sequencing, have been designed and widely used to 
characterize HCV RNA genome. Although these tests are highly 
sensitive, the results may be limited [2] due to HCV high mutation 
rates, low amount of RNA in improperly collected, handled and stored 
samples with a decreased accuracy of the methods [3]. Therefore, HCV 
RNA nucleic acid preparation (i.e. amplification) is a critical step in the 
molecular procedure [4].

HCV ability to shape its molecular architecture as well as to obtain 
a high genetic heterogeneity represents a challenge for the accurate 
establishment of molecular biological techniques [5]. Also, to highlight 
the viral elements responsible for virulence, accurate and greatly 
sensitive molecular techniques have to be carried out [5]. p7, a small 
integral protein orchestrating HCV virion assembly, plays a critical 
role in package of infectious viral progeny and it has been involved 
in genome replication [6]. Several Nuclear Magnetic Resonance 
Spectroscopy (NMR) studies, showed different potential topologies 
and conformations of p7 [7-10]. In particular, it has been demonstrated 
that p7 protein is organized as an N-terminal alpha-helix with two 
transmembrane segments (TMS1-2) connected by a short hydrophilic 
cytosolic segment [8]. Moreover, p7 forms cation-selective pores in the 
endoplasmic reticulum (ER) of the infected cell. p7 is also classified as 
a viroporin, due its ability to display ionic channel function; viroporins 
are a protein family able to manipulate membrane permeability to ions 
thus facilitating virus production [11]. 

However, while there is accumulating structural information on 
p7, there is not about how structural elements relate to its functions. 

p7 is characterized by an elevated genetic variability, a high content 
of hydrophobic amino acids as well as the small size; therefore, gene 
amplification and protein expression is difficult to achieve by well-
known methodologies [12]. Different studies to obtain adequate p7 
amount to determine functional and structural features have been 
carried out [13-20]. Nevertheless these studies revealed crucial steps, 
such as RNA instability and the presence of inhibitory substances, 
especially in biological samples, which represent the greatest problems 
to be overcome [4].

Here we propose a novel strategy based on a three-step PCR (PCR 1, 
PCR 2, and PCR 3) to generate HCV p7 amplification product (Figure 
1A) in virus-free conditions aimed to reduce the impact of nucleic acid 
instability. Based on the p7 gene sequence (NCBI accession number 
NC_004102.1) we collectively designed two sets of oligonucleotides to 
generate a synthetic double-stranded p7 template of 195 bp including 
two artificial codons (an ATG and a stop codon at 5’ and 3’ of p7 
sequence, respectively).

PCR 1 (Figure 1A) was aimed to generate an amplification product 
of 112 bp corresponding to position 1-112 of the p7 sequence. Primers 
oligonucleotides were designed as follows: 
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For 1 (pos. 1-25): 5’-ATg gCT TTg gAg AAC CTC gTA ATA C-3’

Long for 1 (pos. 47-112): 5’-ggA CgC ACg gTC TTg TgT CCT TCC 
TCg TgT TCT TCT gCT TTg CgT ggT ATC TgA Agg gTA ggT ggg-3’

Long Rev 1 (pos. 1-66): 5’-ggA CAC AAg ACC gTg CgT CCC ggC CAg 
ggA TgC TgC ATT gAg TAT TAC gAg gTT CTC CAA AgC CAT-3’

Rev 1 (pos. 93-113): 5’-CCC ACC TAC CCT TCA gAT AC-3’

Primers Long for 1 and Long Rev 1 were designed to have a 
significant overlapping sequence (19 nucleotides, ranging from 
position 47 to 66).

PCR 2 (Figure 1A) was aimed to generate an amplification product 
of 102 bp corresponding to position 93-195 of the p7 sequence. Primers 
oligonucleotides were designed as follow: 

For 2 (pos. 96-114): 5’-TCT gAA ggg TAg gTg ggT g-3’

Long for 2 (pos. 136-195): 5’-TAC ggg ATg Tgg CCT CTC CTC 
CTg CTC CTg CTg gCg TTg CCT CAg Cgg gCA TAC gCA TAA-3’

Long Rev 2 (pos. 96-155): 5’-Agg AgA ggC CAC ATC CCg TAg 
AAg gCg TAg ACC gCT CCg ggC ACC CAC CTA CCC TTC AgA-3’

Rev 2 (pos. 173-195): 5’-TTA TgC gTA TgC CCg CTg Agg CA-3’

Primers Long for 2 and Long Rev 2 were designed to have a 
significant overlapping sequence (19 nucleotides as well, ranging from 
position 136 to 155).

Briefly, PCR 1 and 2 were performed in a thermocycler VERTI 96 
well (Applied Biosystems) in a total volume of 50 μl containing 1 ng of 
each set of long oligonucleotides, 10 μM For 1 and Rev 1 primers, 1.25 
U Taq DNA Polymerase (5 PRIME MasterMix, 2.5x), 50 mM KCl, 30 
mM Tris-HCl, 1.5 mM Mg2+, 0.1% Igepal-CA360 and 200 μM of each 
dNTP (5 PRIME MasterMix, 2.5x). Each PCR was carried out under 
the specific thermal cycler conditions. After reaction, the final products 
were separated on a 3% Agarose gel and visualized under UV light 
with ethidium bromide staining. We observed the amplification of two 
fragments of expected size (112 bp and 101 bp from PCR 1 and PCR 2, 
respectively) (Figure 1B).

PCR 3 (Figure 1A) was finally aimed to generate an amplification 
product corresponding to the p7 gene full-length (position 1-195). To 
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Figure 1A: Schematic representation of the methodology used to generate a p7 cDNA in a virus-free system (see text for details).
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Figure 1B: Amplification products of 112 bp, 102 bp and 195 bp from PCR 1, 
PCR 2 and PCR 3, respectively. The fragment of 195 bp corresponds to the p7 
full-length cDNA.
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this purpose, we combined the amplification products from PCR 1 and 
PCR 2; these two fragments were designed in order to have a 16 bp 
overlapping sequence (position 96-112).

PCR 3 was carried out by using 1 ng of PCR 1 and PCR 2 products 
as template in 50 µL of the reaction mixture containing 10 μM For 
1 and Rev 2 primers, 1.25 U Taq DNA Polymerase 50 mM KCl, 30 
mM Tris-HCl, 1.5 mM Mg2+, 0.1% Igepal-CA360 and 200 μM of each 
dNTP (5 PRIME MasterMix, 2.5x). Thermal cycling was performed in a 
thermocycler VERTI 96well (Applied Biosystems) as described before. 

The final product was separated on a 2% Agarose gel and 
visualized under UV light with ethidium bromide staining. As 
shown in Figure 1B, we observed a fragment of the expected size of 
195 bp corresponding to the p7 full-length cDNA. Direct sequencing 
confirmed the accuracy of the procedure as well as the absence of 
random mutations (data not shown).

Conclusion
In conclusion, we propose an original proof-of-principle 

methodology to synthesize, by a three steps- polymerase chain 
reaction, a short viral cDNA in a virus-free system based on the design 
and combination of nucleotides covering the sequence of interest. This 
approach allows the advantage to work in a safe environment and to 
overcome the elevated genetic variability intrinsic to viral genomes 
without affecting the antigenic characteristics of the putative viral 
protein. More specifically, here we describe the development of this 
new approach by successfully synthesizing a cDNA corresponding to 
the HCV p7 sequence. Experiments are in progress in our laboratory 
to generate expression vectors carrying both wild-type and tagged p7 
sequences to be used for the isolation of p7-interacting proteins in a 
proteomic-based approach [20] from liver eukaryotic cell systems. This 
will help us to shed light on the molecular mechanisms governing p7 
activity in the pathogenesis of HCV-driven hepatitis.
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