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Abstract

This article reviews vitamin B12 (B12) status and deficiency during pregnancy and lactation, its effect on
pregnancy, and the health of the offspring, with the aim to underscore the need for a sustainable strategy to improve
maternal and infant vitamin B12 status of low and middle income countries. Vitamin B12 is a basic nutrient required
for maintenance of normal erythropoiesis, cell reproduction, nucleoprotein and myelin synthesis. B12 deficiency is
associated with adverse pregnancy outcomes and neurodevelopmental morbidity during infancy. Very few studies
have indicated that B12 deficiency may contribute to altered immune responses in animals and humans.
Additionally, no studies have shown modulation of infant motor development in response to maternal B12
supplementation. Despite the high global prevalence of B12 deficiency and its serious effects on pregnant women
and offspring, there is still no consensus on the cut-off of biochemical markers (indicator of B12 deficiency) to
correctly diagnose B12 deficiency in mother-infant dyad. Also, the optimum dose of B12 to normalize B12 status of
mother-infant pairs in a deficient population is not known yet. In addition, markers of other functions such as
neurodevelopment, immune response that may be affected by vitamin B12 deficiency should be measured to
determine if they respond to supplementation. Thus, there is an urgent need to conduct more trials to find out the
optimum dose, to investigate whether intervention with such pre-and post natal vitamin B12 supplementation would
improve maternal, neonatal and child health outcomes in population at risk, giving emphasis on neurological
processes, immune functions and epigenetic modifications. Other strategies including food based approach also
require evidence based results which will help to understand effectiveness of a targeted and well-designed
intervention among this population.
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Introduction
Vitamin B12 (Cyanocobalamin), a water-soluble vitamin is an

essential nutrient required for maintenance of normal erytrhropoiesis,
nucleoprotein and myelin synthesis, cell reproduction and normal
growth. Vitamin B12 is a necessary cofactor in the methionine
synthase reaction, which converts homocysteine into methionine.
Deficiency of vitamin B12 could elevate plasma homocysteine which is
a risk factor for cardiovascular diseases. Methionine is the required
precursor for the formation of S-adenosylmethionine, a universal
methyl donor essential for methylation of phospholipids,
neurotransmitters, amines, DNA, RNA and myelin basic protein. A
reduction in this important methyl donor causes impaired DNA
methylation that may contribute to altered fetal metabolic
programming and increased risk for chronic diseases later in life. In
the mitochondria vitamin B12 is required as a cofactor for the
conversion of methylmalonyl-CoA to succinyl-CoA by the enzyme
methylmalonyl-CoA mutase. In B12 deficiency, the concentration of
methylmalonyl CoA is elevated and forms the by-product
methylmalonic acid (MMA). Thus vitamin B12 insufficiency may
influence carbohydrate and lipid metabolic pathways [1].

Emerging data suggest that deficiency of vitamin B12 [higher
plasma B12 and holotranscobalamin (holoTC); lower plasma

methylmalonic acid (MMA) and total homocysteine (tHcy)
concentrations] is highly prevalent in pregnant and breastfeeding
women and their infant. Impaired vitamin B12 status during
pregnancy is associated with increased risk of birth defects and
common complications [e.g. intrauterine growth restriction, preterm
delivery, neural tube defects (NTD)] [2], and possibly immune
function impairment [3,4]. Most of the case studies indicate that
maternal depletion of the vitamin is the predominant reason for
deficiency in the infant [5]. Vitamin B12 deficiency in early life may
result in short- and long-term effects on infants’ neurological and
cognitive functions which will have profound effects on health,
development and achievement of full human capacity of an entire
generation of children. Maternal supplementation with B12 from early
pregnancy through lactation might be an effective approach to
improve both maternal and infant status, by increasing stores in utero
and concentrations in breast milk. This review summarizes literature
relating to B12 status and deficiency during pregnancy and lactation,
its effect on pregnancy, and the health of the offspring, with the aim to
underscore the need for a sustainable strategy to improve maternal
and infant vitamin B12 status of low and middle income  countries.

Methods and Materials
A comprehensive literature review was performed to identify

articles describing the association of vitamin B12 deficiency with
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adverse pregnancy outcomes and interventions with B12 during
pregnancy and infancy. Databases searched included PubMed and
Google Scholar. Initial key words for the searches included “vitamin
B12”, “pregnancy”, “lactation”, “fetus or neonate”, “infant” and
“supplementation or intervention”. Outcome measures searched
included hematology, birthweight, growth, fetal growth retardation,
immune response, DNA methylation and neurodevelopment. These
terms were also used to undertake searches using the term
“cobalamin”. Further studies were identified by searching for
additional terms based on results obtained from the initial searches in
PubMed. Articles reporting on non- pregnant women, elderly
populations and not reporting outcome of interest were screened out.
Based on titles and abstract over 2000 articles were identified.

Presented here is the brief discussion on homeostasis and
requirements of vitamin B12 during pregnancy and lactation. This is
followed by a discussion on deficiency of vitamin B12, its adverse
pregnancy outcomes and currently available studies on intervention
with vitamin B12 during pregnancy and infancy.

Results

Vitamin B12 homeostasis and requirements during
pregnancy and lactation

The demand for vitamin B12 increases during pregnancy due to
rapid cell multiplication resulting from the uterine enlargement,
placental development, and fetal growth [6]. Animal and human
studies suggest that absorption the vitamin may become more efficient
during pregnancy [7,8]. The number of receptors is usually the rate
limiting factor determining the amount of B12 absorbed via the ileal
receptors. Placental lactogen acts as a regulator of increased Intrinsic
Factor (IF)-mediated vitamin B12 binding to ileal binding sites by
recruiting already existing cryptic receptor rather than stimulating the
synthesis of new one [9]. However despite the increased efficiency of
absorption total plasma B12 declines steadily throughout pregnancy
commencing with the first trimester [10]. This gradual, physiologically
normal decline in the plasma B12 is thought to be due to several
factors such as hemodilution, hormone fluctuations, impaired renal
function, or altered concentration of binding proteins (transcobalamin
and haptocorrin) [11]. The lowest concentration is observed during
third trimester and it returns to prepregnancy levels within a few
weeks postpartum. Vitamin B12 is actively transported to the fetus,
which has a significant influence for the progressive decline of
maternal vitamin B12 levels during pregnancy. Fetal demand for the
vitamin has been estimated to approximately 0.3 µg/day. Earlier
studies by Luhby et al. showed that newly absorbed maternal B12 is
more readily transported to placenta than maternal liver stores [12].
The fetal liver store of vitamin B12 is only 30% of the adult liver B12
content. Available evidence suggests that the fetus retains most of the
plasma B12 to utilize for cellular reactions. The well-nourished human
adult has about 2-5 mg of the vitamin, the majority being stored in the
liver which is adequate without repletion for 3–5 years. A healthy pre-
pregnancy body stores of B12 are, therefore, sufficient to meet
increased demand during pregnancy [13].

Vitamin B12 secretion into breast milk is highly dependent on
current maternal intake and absorption [14,15]. Human milk may
contain 100-fold more haptocorrin (a vitamin B12-binding protein)
than serum, mostly in its free form [16]. Due to higher haptocorrin,
the B12-binding capacity of milk is 1000 times greater than plasma.
Almost all B12 in breast milk is bound to haptocorrin that is stable to

proteolytic enzymes in the gastrointestinal tract. The function of high
amounts of breast milk haptocorrin is unknown. A few studies
proposed that the excess haptocorrin may play a host-defense function
against pathogens in the gastrointestinal tract of breastfed infants
[17,18]. However, this hypothesis was not supported by a systematic
study on a panel of 34 commensal and pathogenic bacteria of infants
[19]. There are few reports describing longitudinal changes in the
concentration of breast milk vitamin B12. Samson et al. reported that
the mean vitamin B12 binding capacity of colostrum is three times
higher than that of mature milk [20]. Breast milk B12 concentrations
decline from the high levels in colostrum to lower levels in mature
milk [21].Based on the amount estimated to maintain normal serum
B12 concentrations and normal hematological status in half of the
adult population, the estimated average requirement for adults (EAR)
is set at 2.2 µg/ day. The recommended dietary allowance (RDA) is 2.4
µg/ day (an amount adequate to meet the requirements of 97.5% of
healthy individuals). The rate of fetal accumulation (~0.1 to 0.2 μg/day
throughout gestation) coupled with the increased efficiency of
maternal absorption increases the EAR of vitamin B12 for pregnancy
by 0.2 μg/ day, with no distinction made for age of the mother.
Therefore, the RDA is increased to 2.6 µg/d in pregnancy to support
daily transfer to the fetus [22]. The Adequate Intake (AI) for infants (0
to 6 mo) is set at 0.4 μg/day. During the first 6 months of lactation,
based on the few available data the average amount of B12 secreted in
the milk of mothers with adequate B12 status is approximately 0.33 μg/
day. To estimate the EAR for lactation, 0.33 μg/day of B12 is added to
the EAR of 2 μg/day for adolescent girls and adult women; the result is
rounded up to +2.4 μg/ day. Because information is not available on
the standard deviation of the requirement for B12, the RDA is set at
120 percent of the EAR. Thus the RDA for lactating women is 2.8 µg/
day to replace secretion of the vitamin in breast milk [6].

Vitamin B12 deficiency
The first sign of vitamin B12 deficiency is characterized by a

decrease in serum holoTC, after which both serum MMA and plasma
tHcy start to increase, and finally there is a reduction in serum vitamin
B12. The next stages of negative B12 balance is impaired
erythropoiesis, accompanied by yet lower concentrations of holoTC
and serum B12, and hypersegmented neutrophils. In the end
hemoglobin concentrations are reduced which results in a macrocytic
anemia [23]. The most severe form of manifestation of deficiency is
sub-acute combined degeneration of the spinal cord, characterized by
degeneration of the posterior and lateral columns of the cord [24].

Measurement of the total vitamin B12 concentration in plasma is
the usual method for assessing vitamin B12 deficiency, despite limited
specificity and controversy about sensitivity [25]. However, the plasma
vitamin B12 concentration is not a reliable indicator of vitamin B12
status in pregnancy. Elevated MMA and tHcy are generally considered
more sensitive for diagnosing deficiency than serum B12. However,
MMA is affected by intestinal bacterial overgrowth and tHcy is
elevated by deficiencies of vitamin B6, folate, and riboflavin. Recent
investigations show that holoTC (the metabolically active fraction of
B12 available to cells) is a more sensitive indicator of vitamin B12
status than the total serum vitamin B12 level or the serum
concentration of MMA and plasma tHcys [26-30]. The reference
values for non-pregnant women are often applied to assess B12
deficiency in pregnant women. Since the concentrations of vitamin
B12, tHcy and MMA are known to decrease during the normal course
of pregnancy, low concentrations of B12 and its metabolites later in
pregnancy must be interpreted with caution. Recently Fedosov
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proposed a new B12 status parameter (w) that combines all four of
these biomarkers in a mathematical model [31]. Evidence is
accumulating that this model is useful to make diagnosis of B12–
related disorders unambiguous.

Dietary deficiency of vitamin B12 is a major problem in the Indian
sub-continent, Africa, Central and South America and Mexico, where
it is prevalent across the life span [32,33]. Emerging data suggest that
deficiency of vitamin B12 (indicated by serum or plasma B12 <150
pmol/L) is highly prevalent in women of reproductive age, particularly
amongst populations with limited intake of animal source foods. In
addition to increased requirement during pregnancy and lactation,
insufficient consumption of animal-source foods, malabsorption
associated with gastric diseases and nonspecific gastritis further
contribute to B12 deficiency [34]. It is difficult to quantify the
prevalence of deficiency in pregnant women partly due to the gradual
decline in the plasma B12 concentration throughout gestation. Based
on gestational week prevalence of deficiency worldwide may vary from
5% (<28 days gestation) to 72% (immediately prior to delivery)
[35,36]. In south Asia, examples of reported prevalence of deficiency
include 27% of pregnant woman at early to late pregnancy (i.e.
gestational week, GW 10.2 ± 4.1 to 32.6 ± 3.9) in rural Nepal, 74% in
Haryana, 65% at GW 18-28 in Pune and 51% at GW ≤14 in urban
south India [37-40]. The MINIMat study in Matlab, a rural area in
Bangladesh showed that B12 deficiency was 46% in pregnant women
at third trimester [41]. The JiVitA study in rural north-western
Bangladesh found a prevalence of 20% deficiency (<150 pmol/L) in
early pregnancy [42].The newborns and infants of vitamin B12-
deficient mothers have low B12 stores at birth which is further
aggravated by very low availability of B12 in breast milk hindering
their growth and development [43]. Maternal status of the vitamin
prior to and during pregnancy, stores at birth and the concentration in
breast milk all have an impact on infant B12 status [44,45]. This is
substantiated by a study on maternal-newborn paired plasma samples
(n=173) in Norway which shows that infants born to healthy, non-
vegetarian mothers and particularly those who were breastfed, had
poor B12 status. Importantly, all three markers of maternal impaired
B12 status predicted low serum B12, high plasma MMA, and high
plasma tHcy in the newborns [46].

Adverse pregnancy outcomes
Vitamin B12 plays a key role in normal functioning of brain and

nervous system [47]. Throughout the lifecycle the most serious
consequence of B12 deficiency is impaired development and function
of neurological processes. The underlying mechanism may involve
impaired myelination or demyelination; altered S-
adenosylmethionine: S-adenosylhomocysteine ratio; imbalance of
Tumor Nacrosis Factor-alpha (TNF-alpha) and Epidermal Growth
Factor (EGF) levels; and accumulated lactate in brain cells [48]. A
study in Brazil showed that the S-adenosyl methionine (SAM): S
adenosyl homocysteine (SAH) ratio was significantly decreased in
both B12-deficient pregnant women (GW: 37–42 wk) and their
newborns. Lower maternal vitamin B12 concentrations (Geometric
mean: 130 pmol/L) were associated with higher tHcy and lower
SAM:SAH in newborns suggesting that methylation could be impaired
in mother-infant pairs [49]. Schorah et al. found an association
between low maternal plasma vitamin B12 and pregnancies affected by
anencephaly [50]. Several studies reported that low maternal serum
vitamin B12 is an independent risk factor for neural tube defects
(NTDs) [51,52]. Reduced B12 binding by TC-II or holoTC also
increases the risk of NTDs [53]. Nine years post-folic acid fortification,

a population based case-control study in Ontario, Canada reported
almost a tripling in the risk for NTDs in the presence of low maternal
B12 status, measured by serum holoTC [35]. A multicenter case-
control study in India (n=318 cases and n=702 controls) demonstrated
that mothers of NTD fetuses had higher plasma tHcy and lower holo-
TC concentrations and that a polymorphism in transcobalamin
(TCN2, 776C>G) genes was a strong predictor of NTD. This study
suggests a potential role of poor B12 status of Indian women in the
etiology of NTD [54]. In general deficiency of vitamin B12 has been
linked to a variety of abnormal neurological symptoms including:
hypotonic muscles, failure to thrive, cerebral atrophy and
developmental regression [48]. Maternal plasma B12 in pregnancy is
also predictive of offspring cognitive performance at 9 years [55].
Children of mothers with low plasma B12 (lowest decile, <77 pmol/L)
during pregnancy performed less well on tests of sustained attention
and short-term memory compared to the children of mothers with
higher plasma vitamin B12 (highest decile, >224 pmol/L). In rural
Kenyan women (n=138), B12 intake during pregnancy was correlated
with improved scores on the infant’s Brazelton Neonatal Behavioral
Assessment reflex subscale score (R = -0.19, p = 0.05; with adjustment
for gestational age) within 3 days after birth [56]. An observational
study in North Indian children (12-18 mo) demonstrated positive
associations between infants’ mental development index score and
vitamin B12 status [57].

A number of studies have reported an association of vitamin B12
deficiency with infertility, IUGR, preeclampsia and early pregnancy
loss [58-63]. One study in Chinese women found that inadequate
preconception vitamin B12 (<258 pmol/L) was associated with a 60%
increased risk of preterm delivery [64]. A cohort study in Bangalore,
India, (n=486) showed that women in the lowest tertile of serum
vitamin B12 concentration during each of the three trimesters of
pregnancy had a significantly higher risk of IUGR [65]. A similar study
carried out in South India (n=1838) observed that high folate and low
vitamin B12 intakes (1.2 µg/d) during pregnancy are associated with
small-for-gestational age infants [66]. Although there is little
information linking vitamin B12 status with gestational diabetes, an
observational cohort study (n=785) carried out in Mysore, India found
an interesting association of B12 deficiency during pregnancy with
obesity and gestational diabetes [67].

Increasing evidence suggest that folic acid supplemented pregnant
women who may be in negative B12 balance, have increased risk for
adverse maternal and infant outcomes (such as increased
cardiometabolic disease risk). Low maternal B12 and a normal-to-high
range of folate during pregnancy was associated with high insulin
resistance and adiposity in the offspring at 5 years of age [39]. In rural
Nepal, maternal low plasma B12 status in early pregnancy was
associated with a significant elevation of HOMA-IR (Homeostatic
model assessment-Insulin Resistance) in the 5 year old child [68].
These studies raised concerns that folic acid supplementation or added
folate in the fortified foods may have adverse effects on women who
have low vitamin B12 and high folate status during pregnancy or on
the health of her offspring [69,70].

DNA methylation, a well characterized epigenetic mechanism, is
essential for normal development and can be directly affected by
dietary methyl donors (protein, folate, choline, methionine, vitamins
B6 and B12) in the one-carbon metabolic pathway [71]. Evidence is
accumulating that adequate maternal -fetal vitamin B12 status during
pregnancy is critical for donating methyl groups for CpG methylation
and epigenetic regulation [72,73]. Impaired DNA methylation might
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ultimately affect infant development and predispose to higher disease
risk later in life via developmental programming [74]. Also evidence
from animal studies substantiates the importance of DNA methylation
in influencing the phenotype of a growing fetus [75]. More recently a
body of research has evolved around the imbalance in neurotrophic
and neurotoxic cytokine levels as a key point in the pathogenesis of
B12-deficient neuropathy [76].

Increasing evidence also suggests that vitamin B12 has important
immunomodulatory effects on B- and T- cell function and humoral
immunity [77-80]. In a study of Japanese men and women aged 36-83
y, B12 deficient (n=11) and control (n=13) subjects were injected with
methyl-B12 every other day for two weeks to examine the effect on
lymphocyte subpopulations and NK cell activity. Antibody-dependent
cell-mediated cytotoxicity, lectin-stimulated lymphocyte blast
formation, and serum immunoglobulin concentrations were not
changed by methyl-B12 treatment [80]. However, vitamin B12
deficient subjects had markedly fewer and less active immune cells
which were revived by restoring B12 status. A similar study in Turkey
[81] reported that in pernicious anemia, abnormalities (lower CD8+
lymphocytes; higher CD4/CD8 ratio, and depressed NK cell activity)
in the immune system are restored by vitamin B12 replacement
therapy. Interestingly, concentrations of immunoglobulins (IgG, IgA
and IgM) and complements (C3) were also elevated after
cyanocobalamin treatment. These results suggest that vitamin B12
may act as a modulatory agent for cellular immunity, especially
affecting CD8+ cells and the natural killer cell system. In a controlled,
prospective cohort study [82] serum antibody titers to 12
pneumococcal serotypes were measured by radioimmunoassay before
and 4 weeks after vaccination in patients (n=15) with low B12 serum

concentrations vs. controls (n=15) with normal B12 concentrations.
Immunocompetent elderly subjects with low B12 concentrations had
impaired antibody response to pneumococcal polysaccharide vaccine
compared to the patients with normal B12. In addition, vitamin B12
remained an independent predictor of antibody response (when
adjusted for mean corpuscular volume and age). These data may point
towards beneficial effects of vitamin B12 on the humoral immune
system and possibly the development of vaccine specific immunity.
However there is a scarcity of information in demonstrating the
consequences of maternal B12 deficency on measures of maternal and
infants’ immunological function.

Interventions during pregnancy and infancy
There are not many reports on status and effects of pre- and

postnatal vitamin B12 supplementation among mother-infant pair
(Table 1). One of the earliest supplementation trials [7] with pregnant
(n=31) and non-pregnant women (n=29) stratified the participants at
baseline into three supplementation groups, 250, 500 and 1000 µg
B12/d (oral dose). Serum B12 concentrations were measured one and
one-half and three hours later. None of the women in either the
pregnant or non-pregnant group showed any response to the 250 µg
supplement. The pregnant women in the 500 µg supplemented group
had a 41.5% increase in serum B12 vs. a 16.6% increase in non-
pregnant women. Pregnant women supplemented with 1000 µg had an
88.8% increase in serum B12 while non-pregnant women had a 28.5%
increase. These data suggests that both groups had a significant
response to supplementation but the pregnant women showed greater
vitamin B12 absorption than the non-pregnant women due to
increased efficiency in absorption during pregnancy.

Study design Results Conclusion and Limitation

Hellegers A et al. [7]

Pregnant (n=31) and non-

pregnant women (n=29), were stratified into three
supplementation groups, 250, 500 and 1000 µg B12/d (oral
dose). Serum B12 concentrations were measured 1, 1.5
and 3 h later. Responder was defined as >160 µg increase
observed in serum B12 concentration.

None of the women in either the pregnant or non-
pregnant group showed any response to the 250 µg
supplement. Pregnant women supplemented with
1000 µg had an 88.8% increase in serum B12 while
non-pregnant women had a 28.5% increase.

Compared to non –pregnant women absorption
of vitamin B12 is significantly increased in
pregnancy.

Serum B12 was the only response measured. 

Eneroth H et al. [83]

RCT in Bangladesh, n=4436 (GW ≥14). Daily micronutrient
supplements either: 1) folic acid and 30 mg iron; Fe30Fol or
2) folic acid and 60 mg iron; or 3) a multiple micronutrient
including folic acid and 30 mg iron (MMS). 
Supplementation continued up to 3 mo postpartum.

46% (n=670) of women had low B12 status, At 6 mo
prevalence of infant B12 deficiency significantly lower
in the MMS group than in the Fe30Fol group (26.1 vs.
36.5%) .

B12 deficiency highly prevalent in this
population; MMS may have a beneficial effect
on B12 status in infancy.

Small effect size; B12 was the only response
measured; No assay of newborn B12 status.

Baylin A et al. [84]

RCT in Tanzania. HIV-infected mothers (n=716); daily oral
dose of one of four regimens: vitamin A, multivitamins (B
including 50 µg B12, C, E), multivitamins including A, or
placebo. Supplementation started at first prenatal visit and
continued up to 6 mo postpartum.

Compared to infants from non-multivitamin-
supplemented mothers, multivitamins increased B12
at 6 wk and 6 mo (mean differences=176 pmol/L,  and
127 pmol/L,  respectively), significant reductions in the
prevalence of B12 deficiency at 6 mo.

Multivitamin (B, C, E) supplementation had
major effect on serum B12 at 6 wk that was
sustained through 6 mo of age.

B12 was the only response measured;

no information on breast feeding frequency;
complementary feeding.

Duggan C [85]

RCT in India. Pregnant women (<14 GW) randomized to
receive either an oral B12 (50 μg/day) or placebo through 6
wk postpartum.

Compared to the placebo group, supplemented
women had higher median plasma B12
concentrations at both the 2nd (216 vs. 111 pmol/L)

Oral maternal vitamin B12 supplementation is
effective to improve maternal and infant B12
status.

Citation: Siddiqua JT, Allen HL, Raqib R, Ahmed T (2014) Vitamin B12 Deficiency in Pregnancy and Lactation: Is there a Need for Pre and Post-
natal Supplementation?. J Nutr Disorders Ther 4: 142. doi:10.4172/2161-0509.1000142

Page 4 of 8

Volume 4 • Issue 2 • 1000142
J Nutr Disorders Ther, an open access journal
ISSN: 2161-0509



and 3rd (184 vs. 105 pmol/L) trimesters; higher breast
milk B12 (136 vs. 87 pmol/L) in the placebo group;
higher infant plasma B12 (199 vs. 136 pmol/L);
reduced infant MMA and tHcy

HoloTC was not assayed; data were not
available for women after postpartum; too short
follow-up period for infants B12 status.

Monsen et al. [86]

RCT in Norway. n=107 infants (6 wk) randomized to
receive either an intramuscular injection of B12 (400 μg) or
no intervention (control). Biomarkers were assayed at
enrollment and at age 4 mo.

Compared to the control group supplement-treated
infants had 75% higher median serum B12, raised
serum B12 (IQR: 291–497 pmol/L), and lowered MMA
(from 0.58 to 0.20 μmol/L) and tHcy (from 7.46 to 4.57
μmol/L) at 4 mo.

Supplementation can normalize a metabolic
profile consistent with impaired B12 status in
young infants.

Control group did not receive placebo
medication; effect on neurological

parameters were not assessed.

Torsvik et al. [87]

RCT, infants (n=79, <8 mo, plasma tHcy concentration ≥6.5
μmol/L ) ) randomized to either an intramuscular injection of
B12 (400 μg) or a sham injection

Supplementation decreased plasma tHcy by 54%, and
MMA by 84%, no significant changes in the placebo
group.

Sig. higher motor function [Alberta Infants Motor Scale
(AIMS)] score in the B12 group than in the placebo
group (7.0 (5.0, 9.0) vs. 4.5 (3.3, 6.0)]. Higher
proportion showed improvements in regurgitations
(69% vs. 29%, respectively; P=0.003).

In infants with impaired B12 function, 400 μg
intramuscular injection of B12 resulted in
biochemical evidence of repletion and
improvement in motor function and
regurgitations;

too short follow-up period (1 mo).

1RCT indicates randomized controlled trial.

Table 1: Summary of interventions with vitamin B12 (pregnant/non-pregnant women and infants)1

Many intervention studies among mother-infant dyads have
included B12 in multivitamin supplements. The MINIMAT trial in
Matlab reported multiple micronutrient supplementation with the
recommended dietary allowances (RDA) (2.6 µg/d B12 in pregnancy
up to 3 months postpartum) did not significantly impact on maternal
B12 deficiency. However it only reduced infant deficiency at 6 mo to
26% [83]. In a randomized, placebo-controlled trial in Tanzania,
multivitamin supplementation (with 50 µg B12) of HIV-infected
mothers (n=716) throughout pregnancy upto 6 months postpartum
significantly increased infant plasma vitamin B12 concentrations at
age 6 weeks and 6 months (mean differences:176 and 127 pmol/l,
respectively) and decreased the prevalence of vitamin B12 deficiency
compared to the placebo [84]. However, adverse or improved
outcomes cannot be attributed to any specific vitamin in such trials
with multivitamin supplementation. A recent randomized study
among Indian women reported that supplementation with B12 (50 µg/
day) throughout pregnancy up to 6 wk postpartum increased the
concentration in maternal and infant plasma and breast milk B12
content [85]. However, both the dose and the duration of
supplementation are important to sustain optimum B12 status in
circulation in mother-infant pairs. The observations by Duggan et al
should be replicated by well-designed RCTs with optimum dose and
extended beyond their 6 wk postpartum observation period. To
investigate benefits of vitamin B12 supplementation, including effects
on anemia, immune function and breast milk, we have conducted a
pilot study in which Bangladeshi women (n=68, 18-35 y, Hb <110 g/L,
11-14 wk pregnant) were randomized to 250 μg B12/day or a placebo
through 3 mo postpartum. Both groups also received 400 μg folic acid
+ 60 mg iron daily as standard of care. A high prevalence of deficient
and marginal status of B12 was reported in early pregnancy.
Furthermore, maternal deficiency predicted poorer infant B12 status
through 3 mo postpartum. These observations imply that it is critically
important to assess the adequacy of the vitamin in maternal and infant

plasma and breast milk in response to adequate pre- and post-natal
doses of B12, in populations with a high prevalence of deficiency.

In a randomized study in Norway, intramuscular injection of 400
μg of vitamin B12 to infants (n = 54) at 6 weeks raised serum B12
(IQR: 291–497 pmol/L), and lowered MMA (from 0.58 to 0.20
μmol/L) and tHcy (from 7.46 to 4.57 μmol/L) at 4 months, compared
to a group (n=51) that received no intervention [86]. Despite the high
prevalence of vitamin B12 deficiency amongst pregnant and
breastfeeding women and their infants, there is a paucity of
information on infant development in response to vitamin B12
supplementation during pregnancy or infancy. A recent double-blind,
randomized controlled trial in infants (<8 months of age)
demonstrated credible evidence that intramuscular injection of 400 μg
hydroxycobalamin resulted in B12 repletion, improvements in motor
function and reduced regurgitations linked to neuromuscular
coordination [87]. This apparent beneficial effect of vitamin B12
administration during infancy and its underlying mechanism requires
more advanced investigations.

Discussion
The highlights of the review are increased B12 requirements during

pregnancy and lactation, adverse pregnancy outcomes and short and
long term consequences of B12 deficiency on child health. The review
shows that the reference range for vitamin B12 status during
pregnancy/lactation and the optimum dose to rectify the deficiency are
still not clear and need more research. Very few RCTs have been
conducted with inconclusive data on appropriate biomarkers of B12
status and short- and long-term health outcomes.

It is well recognized that requirement for B12 increases during
pregnancy and lactation. Vitamin B12 needs during pregnancy and
infancy are so high that it is virtually impossible for these to be met
through diet alone, especially in low and middle income countries.
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Thus, in population with high risk of B12 deficiency to reduce the gap
between needs and intake, it is not imprudent to propose increased
intake of B12 during pregnancy and lactation either through
supplementation or via fortified food.

There have been minimal investigations into the effects of vitamin
B12 supplementation during pregnancy, lactation or infancy on
maternal and infants’ health outcomes. Given the potential adverse
effects of vitamin B12 deficiency on maternal and infant development,
it is important to define B12 deficiency during each trimester using
appropriate cut off. It is also important to conduct rigorously designed
RCTs to find the optimum dose of B12 supplement required to
replenish the deficiency, to understand factors that may explain
variations in response to different doses of supplementation and
impact of supplementation on metabolomic, epigenetic, immune and
endocrine measures that influence the overall health outcomes in
mothers and children. The long-term implication of reduced vitamin
B12 status in children born to vitamin B12 deficient mothers and its
underlying mechanism is not well understood and extended follow-up
studies on metabolic pathways and neurodevelopment of children are
required to answer these interesting questions.

Worldwide, an integrated policy has been adopted to reduce the
incidence of NTD, preferably by iron-folic acid supplementation, but
the high prevalence of deficiency and depletion of vitamin B12 during
pregnancy and infancy leading to increase risk of neural tube defects,
delayed neurological development, low birth weight and higher disease
risk later in life, has received less attention by policy makers. No
unified guidelines are available to assist obstetricians or pediatricians
to prescribe optimum doses of vitamin B12 during pregnancy and
postpartum. From a public health point of view, the identification of
exact strategy to reduce vitamin B12 deficiency is of prime interest.
However, defining an appropriate strategy for the prevention of
deficiency critically depends on evidence based results. Most of the
reported studies show high prevalence of vitamin B12 deficiency in
low and middle income populations. However, there is a lack of
adequately designed RCTs to evaluate the functional outcomes of B12
supplementation. Thus, in conclusion, there is an urgent need to
advance our knowledge in a population specific manner to further
improve the current guidelines of nutritional interventions for
pregnant and lactating women that has direct relevance to child health.
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