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Abstract
The herbicide atrazine (2-chloro-4-ethylamine-6-isopropylamine-s-triazine) is extensively used for weed control 

in sugarcane crops. The application of fungi for the biodegradation of xenobiotics has been studied with promising 
results. Therefore, atrazine degradation mediated by Pleurotus ostreatus INCQS 40310 was evaluated, and the 
involvement of ligninolytic enzymes along with the degradation process was also investigated. To promote high 
degradation percentages and rates, a fractional factorial experimental design was first used to determine the most 
significant medium components for atrazine degradation. This strategy improved atrazine degradation from 39.0% 
to 71.0% after 15 days, with the formation of different metabolites. Afterward, a 32 full factorial design was performed 
using the variables selected in the first part of this study. The salts FeSO4 and MnSO4 showed significant influence 
in the percentages and the rates of atrazine degradation. The medium optimization resulted in 90.3% and 94.5% 
of atrazine degradation after 10 days and 15 days, respectively. Although laccase activity was measured during 
the degradation process, it was not possible to correlate laccase activity with atrazine degradation. The results 
demonstrated the efficiency of P. ostreatus INCQS 40310 for atrazine degradation, thus demonstrating the potential 
of this fungus as a bioremediation agent.
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Introduction
Pesticides have been extensively applied in agriculture over the 

past 30 years, especially in Brazil, which has become one of the largest 
consumers of these xenobiotics, followed by Japan and the United 
States [1]. According to recent data and including formulated products 
[2], 725,000 tons of pesticides were commercialized in Brazil in 2009, 
59% of which corresponded to herbicides (429,693 tons), followed by 
21% insecticides and acaricides (150,189 tons), 12% fungicides (89,889 
tons) and 8% categorized as other (55,806 tons). 

In Brazil, the 2.9% expansion of sugarcane-cultivated areas from 
the 2011/2012 harvest to the 2012/2013 harvest [3] was accompanied 
by an increase in the consumption of specific inputs for the crop. This 
expansion has been motivated by a growing demand for ethanol, a fuel 
that plays a significant role in the Brazilian energy matrix. 

As reported by de Armas et al. [4], herbicides comprise the most 
widely used class of pesticides in the cultivation of sugarcane. Moreover, 
45% of the total world’s production of herbicides corresponds to 
the triazine class [5]. The most often used triazine-class herbicide is 
atrazine (2-chloro-4-ethylamine-6-isopropylamine-s-triazine), which 
is generally applied to control weeds during pre- or post-emergence, 
especially in sugarcane-, corn- and soybean-cultivated areas [5]. The 
chemical structure of atrazine is represented by a triazine ring that has 
been substituted with chlorine, ethylamine and isopropylamine, the 
combination of which makes it recalcitrant to biological degradation 
in the environment [6].

Atrazine has low solubility in water (33 mg L-1 at 27°C). However, it 
is soluble in many organic solvents (360 to 183,000 mg L-1), such as ace-
tonitrile and methanol [7]. Due to its low partition coefficient (octanol-
water), it is not significantly adsorbed by soil. Hence, it is often found 

above the tolerable levels recommended by environmental agencies in 
surface water and groundwater [4]. The United States Environmental 
Protection Agency and the World Health Organization established 
limits of 2 μg/L and 3 μg/L of atrazine in drinking water, respectively 
[8]. The degradation and mineralization of atrazine can occur through 
physical-chemical processes or by microorganism action. Previous 
studies reported in the literature have identified more than 15 me-
tabolites resulting from atrazine degradation [9-13]. The main atrazine 
degradation products are hydroxylated and chlorinated compounds, 
including desethylatrazine (2-chloro-4-amino-6-isopropylamine-s-tri-
azine, DEA), desisopropylatrazine (2-chloro-4-ethylamine-6-amino-
s-triazine, DIA), desethyldesisopropylatrazine (2-chloro-4,6-amino-
s-triazine, DEDIA), desethylhydroxyatrazine (2-hydroxy-4-amino-
6-isopropylamine-s-triazine, DEHA), desisopropylhydroxyatrazine 
(2-hydroxy-4-ethylamine-6-amino-s-triazine, DIHA) and hydroxyat-
razine (2-hydroxy-4-ethylamine-6-isopropylamine-s-triazine, HA).

Bioremediation explores the genetic diversity and metabolic 
versatility of microorganisms and has been a very promising approach 
to convert environmental contaminants into less toxic products that 
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can be integrated into natural biogeochemical cycles [14]. Within the 
soil, the degradation of atrazine by fungi usually follows pathways 
that involve the sequential removal of the aromatic ring substituents, 
beginning with dealkylation, which is the first step in the degradation of 
this compound [12,15]. The application of fungi for the biodegradation 
of recalcitrant chemicals has been widely studied [16-20]. This interest 
is based on the fungal capacity to degrade several molecules of organic 
pollutants and other persistent toxic substances using nonspecific 
enzymes [21-26]. Basidiomycetes, including the genus Pleurotus, can 
degrade lignocellulosic materials through extracellular ligninolytic 
enzymes, such as laccase, manganese peroxidase and lignin peroxidase. 
The oxidative activity and the low specificity of this enzymatic pool 
are generally responsible for the degradation of recalcitrant organic 
pollutants [27], which makes these enzymes important catalysts for 
environmental applications. In addition, previous studies with the 
white-rot fungus Phanerochaete chrysosporium also indicated the 
degradation of atrazine by P450 enzymes [15,28].

The purpose of this work was to apply an experimental design 
as a tool to improve atrazine degradation that is mediated by the 
well-known fungus Pleurotus ostreatus. This optimization strategy 
of promoting the increase of atrazine degradation aims to present a 
promising alternative for the degradation of sugarcane herbicides. 

Materials and Methods

Fungus and culture media

The fungus P. ostreatus INCQS 40310 was kindly provided by 
the Federal University of Lavras and deposited in the Collection of 
Reference Microorganisms in Health Surveillance (Fiocruz-CMRVS). 
P. ostreatus INCQS 40310 was grown on potato dextrose agar (PDA) 
medium for 7 days and preserved at 4°C prior to freezing in glycerol 
at -70°C. The fungus P. ostreatus INCQS 40310 was selected from a 
previous study on atrazine tolerance [29].

For the initial atrazine degradation experiments, a basic nutrient 
medium at pH 6.0 was used, as previously described by Gorbatova et 
al. [30]. 

Atrazine degradation experiments

P. ostreatus INCQS 40310 was inoculated into PDA. After 
inoculation, the agar plates were incubated at 28°C. After 7 days 
of incubation, 3 mycelial plugs (5 mm diameter) from the colony 
margin were used as an inoculum. The mycelial plugs were transferred 
to conical flasks containing 300 mL of basic nutrient medium and 
atrazine at a final concentration of 10 mg L-1. The degradation studies 
were performed in triplicate; therefore, 3 flasks for each condition 
studied were incubated while agitating at 200 rpm for 20 days at 28°C 
± 2°C. Samples of 3 mL were collected from each flask every 5 days of 
incubation and extracted on Waters Oasis® MCX cartridges (a cation-
exchange resin extraction). Atrazine and its derivatives were analyzed 
by high-performance liquid chromatography (HPLC). Control 
experiments were performed under the same conditions in the absence 
of the P. ostreatus INCQS 40310 or atrazine, as described above.

High-performance liquid chromatography analyses 

After solid-phase extraction, the extracts were analyzed by HPLC 
using a Shimadzu LC-10AT chromatograph that was equipped with 
a UV-Vis detector, which was monitored at 221 nm and 230 nm. The 
flow was kept at 1 mL/min, the auto-injection volume was 20.0 µL 
and a Class VP 6.1 program was used for data acquisition and system 

control. The HPLC column used was a Shim-Pack C18 (250×4.6 mm, 
4.6 µm), and the mobile phases were composed of ACN and phosphate 
buffer, pH 7.2, using a segmented gradient elution [29]. The atrazine 
degradation and product formation were analyzed by HPLC under the 
same conditions, as previously described. The standards of A (purity 
98.4% w/w) and its derivatives, DIA (purity 98.0% w/w), DEA (purity 
98.5% w/w), HA (purity 96.0% w/w) and DEDIA (purity 95.7% w/w); 
were obtained from Dr. Ehrenstorfer GmbH company. DEHA (purity 
98.7% w/w) and DIHA (purity 98.0% w/w) were obtained from Riedel 
Company-de-Haën. All solutions were stored in a freezer.

Maximizing the degradation of atrazine through experimental 
design

To attain the optimum culture medium composition for the 
atrazine degradation, a factorial experimental design was used to 
evaluate the significance of each of the components. Physical variables, 
such as agitation speed, temperature, pH and incubation time, were 
not considered for the statistical design analysis. These conditions were 
selected from previous studies reported in the literature, as culture 
medium components have been demonstrated by Teixeira and co-
workers to be more relevant than physical variables [20].

It is important to study the actual effects of each compound in 
the medium and to also minimize the amount of each component to 
reduce costs. The 2IV

8-4 fractional factorial design was initially employed 
to investigate the main effects and their interactions with the factors on 
the percentage of atrazine degradation. In the first stage of the study, 
the concentration of salts was equal to zero. The following independent 
variables were tested: (X1) zinc sulfate, (X2) iron sulfate, (X3) manganese 
sulfate, (X4) magnesium sulfate, (X5) copper sulfate, (X6) glucose, (X7) 
peptone, and (X8) yeast extract. All these factors were evaluated at two 
levels, low (−1) and high (+1), which were combined according to a 2IV

8-

4 fractional factorial design (resolution four), with 4 repetitions at the 
central point (0) and generating relationships I=1235, I=1246, I=1347 
and I=2348. Subsequently, the 32 full factorial design was used for the 
optimization of the microbial process for atrazine degradation. The 
monitored responses were the degradation of atrazine (expressed as 
percentage) and laccase enzyme activity (expressed in UI mL-1). Based 
on factorial design, samples were collected at 5, 10, 15 and 20 days of 
incubation and processed as described above during the experiments 
of atrazine degradation. 

Software

In the present study, the software Statistica 7.0 (StatSoft, Tulsa, OK, 
USA) was used for the design of the experiment and analysis of the 
obtained data.

Determination of enzymatic activities

The presence and involvement of ligninolytic enzymes produced 
by P. ostreatus INCQS 40310 was also investigated. Laccase activity 
was determined spectrophotometrically according to the method of 
Niku-Paavola et al. [31] with slight modifications by monitoring the 
oxidation of 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-
ABTS at room temperature without agitation. The assay mixture 
contained 3 mM ABTS, 0.2 M sodium succinate buffer (pH 4.5) and 
100 μL of reaction medium in a total volume of 2 mL. The oxidation of 
ABTS was monitored at 420 nm (ε=36,000 M-1 cm-1).

Manganese peroxidase activity was determined 
spectrophotometrically according to the oxidation of phenol red in the 
presence of manganese and hydrogen peroxide [32]. The assay mixture 
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contained 0.25 mM sodium lactate, 0.5% bovine albumin, 2 mM 
MnSO4, 500 μL of the reaction medium, 0.1% phenol red and 2 mM 
H2O2. The oxidation of phenol red was monitored at 610 nm (ε=44,600 
M-1 cm-1).

Lignin peroxidase activity was determined spectrophotometrically 
according to the oxidation of veratryl alcohol into veratryl aldehyde 
[33]. The assay mixture contained 50 mM sodium tartrate buffer, 50 
mM veratryl alcohol, 1800 μL of the reaction medium and 10 mM 
H2O2. The oxidation of veratryl alcohol was monitored at 310 nm 
(ε=9,200 M-1 cm-1).

Results and Discussion

Optimization of atrazine degradation through factorial 
design 

Twenty assays were performed with different concentrations of each 
component of the culture medium to determine optimal conditions for 
the maximum degradation of atrazine, according to the data shown in 
table 1. The changes in the concentrations of the components in the 
culture medium promoted an increase in the percentage of atrazine 
degradation and the diversification of the metabolites formed. 

Different results were obtained according to the compositions 
of the culture medium, revealing that the highest percentage of 
atrazine degradation occurred in assay 12 in which 71% of atrazine 
was transformed after 15 days. Moreover, after 10 days of cultivation, 
less than 50% of the atrazine had been consumed. It should also be 
noted that the maximum atrazine degradation was 39.0% prior to the 
factorial design [29]. 

The use of this statistical tool proved to be very efficient because 
it increased atrazine degradation by 1.8 times and diversified the 
metabolites that were formed. In addition to DEA and DIA, the 
metabolites DIHA, DEDIA and DEHA were also detected (Table 2). 

According to the literature, atrazine is more toxic than its 
degradation products [34]. For example, atrazine presented higher 
chronic toxicity when compared to DEA towards rat endocrine 
activity. The degradation product DEDIA was also less toxic 
than s-triazine (the ring system of triazine) towards birds. For 
phototrophic microorganisms, the decreasing order of toxicity was: 
atrazine>DEA>DIA. Additionally, the degradation products HA and 
DEDIA were nontoxic towards most phototrophic microorganism 
cultures tested [35]. The herbicide atrazine was partly converted into 
polar dechlorinated and/or N-dealkylated metabolites. These results 
agreed with previous studies described in the literature [15] in which 
the dealkylated products appeared as the major metabolites during 
the microbial degradation of chloro-s-triazines. In general, soil fungi 
remove the ethyl group of atrazine before the removal of the isopropyl 
group [36,37].

Table 2 presents the most relevant results obtained from the 
fractional factorial design (2IV

8-4), regarding not only the optimal 
percentage of degradation (4,11,12) but also the results that showed 
minimum medium composition (1) and unidentified metabolites 
(13,16). Another interesting result was obtained from assay 4, which 
promoted 60% atrazine degradation after 20 days with the formation of 
DIHA, DEDIA, DIA, HA and DEA. 

Even though the atrazine degradation in assay 1 achieved only 
38% after 10 days, this result should be emphasized because the culture 

Assays
Contrast coefficients Atrazine degradation (%)

X1 X2 X3 X4 X5 X6 X7 X8 5 days 10 days 15 days 20 days
1 -1 -1 -1 -1 -1 -1 -1 -1 8.5 38.5 38.8 33.5
2 1 -1 -1 -1 1 1 1 -1 11.6 21.5 16.0 21.5
3 -1 1 -1 -1 1 1 -1 1 15.5 23.2 22.2 23.7
4 1 1 -1 -1 -1 -1 1 1 22.6 31.7 49.7 59.7
5 -1 -1 1 -1 1 -1 1 1 23.2 24.4 43.3 49.4
6 1 -1 1 -1 -1 1 -1 1 19.4 23.3 21.0 33.1
7 -1 1 1 -1 -1 1 1 -1 32.5 34.6 35.7 31.5
8 1 1 1 -1 1 -1 -1 -1 22.0 38.2 39.8 28.9
9 -1 -1 -1 1 -1 1 1 1 6.8 16.3 18.7 18.7
10 1 -1 -1 1 1 -1 -1 1 14.3 19.0 36.1 37.1
11 -1 1 -1 1 1 -1 1 -1 23.6 36.5 52.1 63.3
12 1 1 -1 1 -1 1 -1 -1 4.9 52.5 71.0 71.0
13 -1 -1 1 1 1 1 -1 -1 21.4 25.1 34.9 35.7
14 1 -1 1 1 -1 -1 1 -1 5.1 5.7 8.9 6.3
15 -1 1 1 1 -1 -1 -1 1 24.0 26.6 33.0 32.2
16 1 1 1 1 1 1 1 1 15.4 18.2 22.9 23.9
17 0 0 0 0 0 0 0 0 15.0 19.9 20.1 26.0
18 0 0 0 0 0 0 0 0 21.6 24.9 25.9 38.5
19 0 0 0 0 0 0 0 0 23.5 26.9 28.1 23.6
20 0 0 0 0 0 0 0 0 16.0 19.6 18.1 24.8

X 1 – ZnSO4 (g L-1): (-1): 0.0, (0): 0.001, (+1): 0.002
X2 - FeSO4: (g L-1) (-1): 0.0, (0): 0.0005, (+1): 0.001
X3 - MnSO4 (g L-1): (-1): 0.0, (0): 0.05, (+1): 0.1
X4 - MgSO4 (g L-1): (-1): 0.0, (0): 0.5, (+1): 1.0
X5 - CuSO4 (g L-1): (-1): 0.0, (0): 0.25, (+1): 0.5
X6 – glucose (g L-1): (-1): 2.0, (0): 5.0, (+1): 8.0
X7 – peptone (g L-1): (-1): 1.0, (0): 3.0, (+1): 5.0
X8 – yeast extract (g L-1): (-1): 2.0, (0): 5.0, (+1): 8.0

Table 1:  Fractional factional design 2IV
8-4 with encoded variables and atrazine degradation.
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medium from this assay contained the poorest medium composition 
established in the factorial design, level-1, as described in table 1. 
Therefore, considering the lowest concentration of constituents and 
also the absence of all salts, it is noteworthy that conditions in assay 1 
simulated the low-cost medium composition in this study.

The results obtained after the fractional factorial design (2IV
8-

4) presented certain advantages, as mentioned above, including an 
increased level of degradation, medium composition reduction and 
diversification of the degradation products. 

The first part of this study revealed the significance of the variables 
analyzed. Considering the results obtained from the 2IV

8-4 fractional 
factorial design (Table 1), only the variables X2 (FeSO4) and X3 (MnSO4) 
were significant within the 95% confidence interval for atrazine 
degradation (%) during the first 15 days. The other variables were not 
significant within the intervals investigated, according to the Pareto 
chart (data not shown). Regarding the Pareto chart, the effect bars that 
crossed the red dashed line were significant within the 95% interval. 
Additionally, FeSO4 exhibited a positive significant effect, while MnSO4 
had a negative effect. The other variables were not significant within 
the concentration interval investigated. Thus, considering the results 
obtained from the 2IV

8-4 fractional factorial design and to improve the 
atrazine degradation, the concentration of no significant variables 
were maintained at low levels (-1), i.e., ZnSO4=0 g L-1, MgSO4=0 g L-1, 
CuSO4=0 g L-1, glucose=2 g L-1, peptone=1 g L-1 and yeast extract=2 
g L-1. A 32 full factorial design with triplicate at the central point was 
then performed, considering just the variables FeSO4 and MnSO4. The 
studied concentration range of FeSO4 was increased, while MnSO4 
was decreased based on the 2IV

8-4 fractional factorial design results, as 
shown in table 3.

Presented in table 3, the results obtained from the 32 full factorial 
design showed that the percentages of atrazine degradation were only 
as high as 4.1% among the 11 experiments performed after 5 days of 
incubation. However, after 10 and 15 days, the results were significant. 
Experiments 3, 8, 9, 10 and 11 were very similar for the period of 10 and 
15 days, presenting atrazine degradation percentages of approximately 
80%. Less favorable conditions were observed for atrazine degradation 
after 10 and 15 days when the concentrations of FeSO4 and MnSO4 
were simultaneously maintained at the lowest level (77%, assay 1). 
However, the best results obtained simultaneously for the period of 10 
(90.3%) and 15 days (94.5%) were observed when FeSO4 and MnSO4 
were fixed at low and high levels, respectively (assay 7). Therefore, assay 
7 showed the best results from this optimization study. In addition to 
maximizing the atrazine degradation level, which reached 90.3% within 
10 days of incubation, it also allowed a 5 day reduction in incubation 
time. Very good results were also obtained with assays 5, 6 and 7 in 
which the atrazine degradation was greater than 90% after 15 days. It 
should also be noted that all the assays showed good percentages of 
atrazine degradation, which varied from 77% to 95% after 15 days of 
incubation. The period of 15 days presented the best set of results for 
the percentage of atrazine degradation. As a matter of fact, the 15 day 
period did not show a lack of fit for the model: 

y′=88.94(± 2.20)+0.12(± 1.74) X1+2.77(± 1.74) X2-1.02(± 2.70) 
X12-2.40 (± 2.70) X22-4.16(± 2.13) X1X2

within a 95% confidence interval, as the lack of fit test returned 
Fcalculated (mean square lack of fit / mean Square pure error)=1.03, which was 
less than Fcritical,n1:3,n2:3,a:0.05 19.16. This result was corroborated by the 
corresponding response surface plot, which describes the atrazine 
degradation percentage for the system studied. It is important to 

highlight that no model coefficients were significant for α equal to 0.05 
(Figure 1).

The sequential strategy enabled the selection of a culture medium 
that was capable of promoting high atrazine degradation (90.3% 
and 94.5%) after 10 and 15 days, respectively. Table 4 clearly shows 
that, in addition to DEA and DIA, which were previously produced, 
DIHA, DEDIA and DEHA were also obtained. This result revealed the 

Assays Degradation (%) Time (days) Metabolites Formed
1 38.8 10 DIA, DEA
4 59.7 20 DIHA, DEDIA, DIA, HA, DEA
11 63.3 20 DIA
12 71.0 15 DIHA, DEDIA, DEHA, DIA, DEA
13 35.7 15 DIA, HA, DEA, U.M.*
16 24.8 15 DEHA, DEA, U.M.*

*U.M. – unidentified metabolites

Table 2: Percentage of atrazine degradation and its metabolites formed for the 
most relevant results after the fractional factorial design (2IV

8-4). The best result, 
assay 12, is highlighted.

X1- FeSO4 (g L-1):(-1):0.001; (0): 0.0015; (+1): 0.002
X2- MnSO4 (g L-1): (-1):0.0 (0): 0.025; (+1): 0.05

Table 3:  Experimental design (32) with encoded variables and atrazine degradation. 

Assays Contrast coefficients X1 X2

Atrazine degradation (%)
5 days 10 days 15 days

1 -1 -1 3.2 46.9 77.1
2 0 -1 4.1 48.5 88.4
3 1 -1 2.2 82.5 83.7
4 -1 0 2.9 48.7 86.9
5 0 0 3.6 82.6 93.0
6 1 0 2.4 72.7 91.1
7 -1 1 3.9 90.3 94.5
8 0 1 2.6 84.4 86.9
9 1 1 2.9 83.6 84.5

10 0 0 3.8 85.8 86.9
11 0 0 4.1 80.5 84.8

90
85
80

95

90

85

80

A
trazine degradation (%

)

0.00200.0017
0.0015

0.0012
0.0010

Figure 1: Response surface of atrazine degradation as a function of FeSO4 
and MnSO4 concentrations.
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relevance of the adopted strategy, as it allowed the diversification of the 
metabolites and a reduction in both the number and the concentrations 
of the components of the culture medium. 

Compared to previous studies [15,28,38,39], the results obtained in 
the two stages of the experimental design (assay 12 and assay 7) of the 
current investigation were far superior (Table 5). 

Determination of laccase activities

In the present study, the correlation between the ligninolytic 
enzymes and the atrazine degradation was also evaluated. The fungus P. 
ostreatus is widely known for its capacity to secrete several ligninolytic 
enzymes [40]. Laccase, lignin peroxidase and manganese peroxidase 
were evaluated during this optimization study; however, only very low 
laccase activity was determined, as LiP and MnP activities were not 
detected. Moreover, the laccase activity pattern revealed very similar 
behaviors both in the presence and absence of atrazine, which indicated 
that atrazine did not act as an inducer of the laccase production (data 
not shown).

Figure 2 shows the activity of laccase over 20 days in the 2IV
8-4 

fractional factorial design, and Figure 3 shows the activity of laccase 
obtained from the 32 full factorial design.

From the fractional factorial design (Figure 2), the highest laccase 
activity was obtained in assay 11 (1.4 UI mL-1), which exhibited 63% 
atrazine degradation after 20 days, while the highest percentage of 
atrazine degradation was found in assay 12 (71% after 15 days) (Table 

2). Although it was not possible to correlate the laccase activity with 
the atrazine degradation, the medium from assay 11 tripled the 
production of laccase when compared with the results obtained before 
the experimental design (0.533 UI mL-1). Assay 12, which showed 
the highest level of atrazine degradation, presented a non-significant 
laccase activity of 0.174 UI mL-1 after 10 days (Figure 2). Similar results 
were found in the 32 full factorial design, indicating low activity of 
laccase in assay 7 (highest percentage of atrazine degradation).

The literature also reported studies from which there was no 
correlation between pesticide degradation and ligninolytic enzymes, 
corroborating the present results. Hiratsuka et al. [41] demonstrated 
that Trametes versicolor IFO 30340 was able to degrade a series of 
diphenyl ether herbicides without the involvement of ligninolytic 
enzymes. However, intracellular enzymes, such as cytochrome 
P450 monooxygenases, were responsible for mediating the initial 
N-dealkylation of the herbicide. The involvement of the P450 enzymes 
in atrazine degradation was also studied in the presence of the white-
rot fungus P. ostreatus [15,28].

Bastos and Magan [42] studied the degradation of the herbicide 
atrazine in soil by the fungus Trametes versi color over 24 weeks and 
found that the enzyme laccase played an insignificant role in the 
degradation process, which corroborates the findings of the current 
investigation.

The aforementioned results and the previous studies reported 
in the literature support the choice of P. ostreatus INCQS 40310 for 

Conditions studied Culture medium Composition (g L-1) Pergentage of degradation after 10 days Pergentage of degradation after 15 days

Initial Condition [30]

ZnSO4 		  (0.001)
FeSO4 		  (0.0005)
MnSO4 		  (0.05)
MgSO4		   (0.5)
CuSO4		  (0.25)
Glucose		  (5.0)
Peptone		  (3.0)
Yeast Extract	 (5.0)

22.8 39.0

Fractional factorial design (2IV
8-4)

(Best condition – assay 12)

ZnSO4		  (0.002)
FeSO4		  (0.001)
MgSO4		  (1.0)
Glucose		  (8.0)
Peptone		  (1.0)
Yeast Extractt	 (2.0)

52.5 71.0

Full experimental design (32)
(Best condition – assay 7)

FeSO4		  (0.001)
MnSO4		  (0.05)
Glucose		  (2.0)
Peptone		  (1.0)
Yeast Extract	 (2.0)

90.3 94.5

Table 4: Comparative analyses of culture media composition before and after the experimental design. The best results of atrazine degradation were also given.

Fungi Time (days) Concentration Metabolites formed Degradation (%) Reference
Phanerochaete crhysosporium 

BKM-F-1767 16 2 µm L-1 HA, DEA, DEHA and DIA 48 [15]

Pleurotus ostreatus 42 10 mg L-1 U.M.* 15,5 [34]

Pleurotus pulmonaris 25 20 mg L-1 DEA, DIA, DEDIA and 2-chloro-4-ethylamino-6-
(1-hydroxyisopropyl) amino-1,3,5 triazine 50 [28]

Lentinula edodes 30 10 µg mL-1 U.M.* 26 [35]
Agaricus subrufescens 30 10 µg mL-1 U.M.* 35 [35]

P. ostreatus  INCQS 40310 15 10 mg L-1 DEA and DIA 39 Present study; before factorial 
design

P. ostreatus INCQS 40310 15 10 mg L-1 DIHA, DEDIA, DEHA, DIA and DEA 71 Present study; fractional 
factorial design (28-4)

P.  ostreatus INCQS 40310 10 10 mg L-1 DIHA, DEDIA, DEHA, DIA and DEA 90 Present study; full factorial 
design (32)

Table 5: Studies on atrazine degradation mediated by fungi. Comparative description of experimental conditions and the metabolites obtained.
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Figure 2: Laccase activity in all media studied in the 2IV
8-4 fractional factorial design (3, 6, 10, 15 and 20 days).
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Figure 3: Laccase activity in all media studied in the 32 full factorial design (3, 5, 7, 10 and 12 days).

the degradation of atrazine. Indeed, the significance of the Fe2SO4 in 
the culture medium revealed during this study that the degradation 
process could be directly related to cytochrome P450 enzymes, which 
are well-known hemeproteins. 

Conclusions
The optimization strategy enabled the selection of a culture 

medium capable of promoting high atrazine degradation, 90.3% and 
94.5%, after 10 and 15 days, respectively, which increased atrazine 
degradation by a factor of 2.5 (39.0% to 94.5%). Our results agreed 
with previous studies described in the literature in which dealkylated 
products appeared as the major metabolites produced during the initial 
mechanism of microbial degradation of chloro-s-triazines.

Although P. ostreatus INCQS 40310 was able to degrade atrazine 
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and laccase was produced under certain conditions, it was not possible 
to correlate the production of this enzyme with atrazine degradation. 
Additionally, the significant presence of Mn in the optimized medium 
was not related to manganese peroxidase activity.

The results obtained in the optimization of the culture medium 
(salts of Fe and Mn as significant variables) suggested the involvement 
of other enzymes for atrazine degradation, such as P450 enzymes. The 
relationship between the involvement of extracellular/intracellular 
enzymes during atrazine degradation is now under investigation. 
Further work is necessary to clarify this question and the biochemistry 
of atrazine degradation by P. ostreatus INCQS 40310.

The present investigation demonstrates the high potential of the 
filamentous fungus P. ostreatus INCQS 40310 as a bioremediation 
agent. It is also important to mention that the use of factorial design 
was crucial for the improvement of the degradation levels.
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