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Abstract

Background

Proteins directly interacting with each other tend to have similar functions and be involved in the same cellular

processes. Mutations in genes that code for them often lead to the same family of disease phenotypes. Efforts

have been made to prioritize positional candidate genes for complex diseases utilize the protein-protein interac-

tion (PPI) information. But such an approach is often considered too general to be practically useful for specific

diseases.

Results

In this study we investigate the efficacy of this approach in type 1 diabetes (T1D). 266 known disease genes,

and 983 positional candidate genes from the 18 established linkage loci of T1D, are compiled from the T1Dbase

(http://t1dbase.org). We found that the PPI network of known T1D genes has distinct topological features from

others, with significantly higher number of interactions among themselves even after adjusting for their high

network degrees (p<1e-5). We then define those positional candidates that are first degree PPI neighbours of

the 266 known disease genes to be new candidate disease genes. This leads to a list of 68 genes for further

study. Cross validation using the known disease genes as benchmark reveals that the enrichment is ~17.1 fold

over random selection, and ~4 fold better than using the linkage information alone. We find that the citations of

the new candidates in T1D-related publications are significantly (p<1e-7) more than random, even after exclud-

ing the co-citation with the known disease genes; they are significantly over-represented (p<1e-10) in the top 30

GO terms shared by known disease genes. Furthermore, sequence analysis reveals that they contain signifi-

cantly (p<0.0004) more protein domains that are known to be relevant to T1D. These findings provide indirect

validation of the newly predicted candidates.

Conclusion

Our study demonstrates the potential of the PPI information in prioritizing positional candidate genes for T1D.

Abbreviations

T1D, Type 1 Diabetes; HT, High Throughput; PPI, Protein-Protein Interaction; HPRD, Human Protein Reference Data-

base; CC, clustering coefficient; KS-test, Kolmogorov-Smirnov test.
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Background

Dissecting the genetics of complex diseases has been chal-

lenging. Traditional linkage mapping approaches, developed

based on single disease gene concept, have been less pow-

erful due to locus heterogeneity and epistasis (Glazier et al.,

2002; Botstein and Risch, 2003). According to T1Dbase

(http://t1dbase.org), a public website and database that sup-

ports the type 1 diabetes (T1D) research community (Hulbert

et al., 2007), 18 chromosome regions have shown linkage to

T1D (at least in some populations), and are believed to

harbour disease genes. They vary in length and gene count;

most contain numerous, up to 277 (the IDDM4 locus), genes.

For most loci the sequence variation responsible for the link-

age has not been identified (Atkinson, 2005).

This problem is not unique to T1D, most complex human

diseases are facing the same difficulty. A number of

bioinformatics/integrative approaches have been developed

to prioritize and narrow down the positional candidate gene

list obtained from linkage peaks, by bringing in other types

of data of the genes, including expression patterns, onto-

logical annotations, and text mining of PubMed abstracts,

etc. For example, several studies have utilized gene expres-

sion profiles in relevant tissues and/or the eQTL informa-

tion of the gene expressions (Zhu et al., 2004; Cervino et

al., 2005; Chesler et al., 2005; Schadt et al., 2005; Gandhi et

al., 2006), including in the study of T1D (Eaves et al., 2002).

Recently, approaches to prioritize candidates based on their

functional relatedness to the known disease genes are ex-

plored. This is based on the concept that complex human

diseases are caused by multiple genes. Since they together

lead to the same or similar disease phenotypes, the genes

are likely to be related functionally. Such functional related-

ness can be inferred from their functional annotation, co-

expression pattern, and protein-protein interaction (PPI)

networks, etc. Indeed, analysis of known disease genes re-

vealed that those of the same diseases tend to have higher

and synchronized expressions as a group, and to interact

(PPI) with each other (Xu and Li, 2006). Therefore these

characteristics can be utilized in prioritizing positional can-

didates and novel disease gene discovery. For example,

Frankee et al. proposed to rank genes in candidate regions

by their relatedness to candidates in other regions, which

was evaluated according to their sharing in pathway and

GO (Gene Ontology) annotations, microarray co-expres-

sion, and PPI (Franke et al., 2006). Bergholdt et al. (2007)

used PPI to identify network modules that contained sig-

nificant enrichment of proteins from interacting regions, and

hence novel candidate genes for T1D. Of these character-

istics, direct PPI is one of the strongest manifestations of a

functional relation between genes. Recent studies showed

that mutations to interacting proteins can lead to similar dis-

ease phenotypes (Lage et al., 2007; Sieberts and Schadt,

2007). High throughput analysis of all OMIM (Online Men-

delian Inheritance in Man, http://www.ncbi.nlm.nih.gov/

entr ez/quer y.fcgi?db=OMIM) human diseases also in-

dicated the potential of utilizing PPI information alone to

prioritize disease gene candidates (Oti et al., 2006).

Such integrative genomics approaches, though show prom-

ise theoretically in a general sense, are still often consid-

ered not practically useful for specific diseases (Oti and

Brunner, 2007). In this study, we will first examine the PPI

network structure of the known T1D genes. Based on the

results, we design an algorithm to prioritize the positional

candidates according to their PPI with the known T1D genes.

It leads to the identification of 68 new candidates. We ex-

amine the likelihood of their involvement in T1D from sev-

eral aspects including their functional annotation, indepen-

dent citation in T1D-related publications, and protein se-

quence domain characteristics. Our study differ from pre-

vious T1D work by others (Bergholdt et al., 2007) in that

we take all the known functional and positional candidates

(according to T1DBase) as a starting point, rather than limit

to only the positive predictions from the recent genome wide

association studies. Further, we offer a comprehensive evalu-

ation of our novel predictions.

Methods

T1D Genetic Data

The following data were downloaded from T1Dbase: the

complete list of 2661  known functional candidate genes of

T1D (which will be termed known T1D genes in this study);

the 983 positional candidate genes from the 18 known T1D

linkage regions; and information of T1Drelated and all Entrez

Gene publications. T1Dbase compiled the list of known func-

tional candidate genes for T1D from the Genetic Associa-

tion Database (http://geneticassociationdb.nih.gov, genes

shown association to human diseases were curated from

genetic studies reported in published scientific papers), and

from genes deemed of interest to T1D by the Wellcome

Trust Diabetes and Inflammation Laboratory. The 18 link-

age regions were compiled from published genome scan

duties. More detail can be found from its website http://

t1dbase.org.

Candidate Gene Prediction

PPI annotation was downloaded from the Human Pro-

tein Reference Database (HPRD http://www.hprd.org/).

Additionally, two high throughput PPI datasets by Rual et

al., (2005) and Stelzl et al. (2005) were obtained from the
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supplementary material of their papers, and were combined.

The pooled dataset is referred to as HT (high throughput) in

this study. The significance of the PPI enrichment among

the T1D genes was evaluated using the bootstrapping

method. For each of 20 times, we randomly selected the

same number of genes from the HPRD or the HT dataset,

and determined the PPI among them. The results were then

used to determine the PPI statistics for a random list of

genes.

The first-degree (level-1) PPI neighbours of all known

disease genes were first determined and called baited genes.

The algorithm then went through all 983 positional candi-

dates, and identified those that are baited genes to be new

candidate disease genes. The number of independent baits

(known T1D genes) for each baited gene was also deter-

mined. The latter was in turn used to investigate if a gene

with more disease gene partners is more likely to be also a

disease gene. This could lead to further prioritization of the

predicted candidates.

Functional analysis of known and predicted T1D genes

were carried out using GOStat (Beissbarth and Speed,

2004). Compared with other ontological analysis tools, it has

the advantage that parent-child relationship between the GO

terms are considered (Beissbarth and Speed, 2004). The

protein domain information was retrieved from InterPro

(http://www.ebi.ac.uk/interpro/), and Fisher’s test was used

to examine domains overrepresented in known and predicted

T1D genes (Mulder et al., 2005).

Results

Topological Features of the PPI Network of known

T1D Disease Genes

To avoid any potential bias toward well studies genes

(whose interaction with other genes are better character-

ized) (Oti and Brunner, 2007; Ideker and Sharan, 2008), we

initially examined the PPI networks using information both

from the HPRD annotation, and from the 2 HT data sets

(Rual et al., 2005; Stelzl et al., 2005). Figure 1 presents the

results. We found that the T1D genes interact with each

other significantly more often than randomly selected gene

sets. Of all 20152 known human genes (according to NCBI’s

Gene database), 9222 are annotated in HPRD, and 4157 in

HT. For the 266 known T1D genes, 222 are annotated in

HPRD, and 75 in HT. There are a total of 34398 edges (in

network’s language, each node represents one protein mol-

ecule, and an  edge between two nodes means the two

molecules interact with each other) among the 9222 pro-

teins in HPRD, and 9277 edges among the 4157 proteins in

HT. The numbers for the T1D genes are 169 in HPRD, and

25 in HT, respectively. In contrast, bootstrapping yields only

21.1±4.2 and 3.7±2.3 interactions for a random gene set of

the same sizes. These are 8.0 and 6.8 fold enrichment, re-

spectively. The results from HPRD and HT are compa-

rable, and we do not observe any noticeable bias in the HPRD

dataset. In the rest of this study, we used HPRD only as it

contains more comprehensive information of PPI.

Figure 1: PPI networks of T1D disease genes according to HPRD (left) and HT (right).
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It has been found that proteins of disease genes often

possess higher network degrees (i.e. number of interac-

tions with other proteins) than randomly selected genes (Tu

et al., 2006; Xu and Li, 2006). We found that this is indeed

true for the T1D genes (p<0.001, Kolmogorov-Smirnov test,

or, KS-test). This raises a question that whether the enrich-

ment was brought in by the higher degrees of the known

disease genes? To answer this question we bootstrapped

random genes with the same degree distribution. Signifi-

cant enrichment was still observed (p<1e-5), suggesting in-

dependent contributions from other sources, likely their close

functional relatedness.

Genetic networks have been found to be different from

random networks in structure. For example, they often ex-

hibit small-world and scale-free properties (Barabasi and

Oltvai, 2004). Therefore merely comparing the average

network behaviour may not be adequate. For this reason,

we also examined the topological properties of the disease

gene PPI networks. We find that the degrees of all proteins

follow a power law w p(k)~k-λ , with λ ~1.35, r~0.98, and

p<0.001 (figure 2A), where p(k) is the probability density.

This indicates the PPI network is scale free. The distribu-

tion for the 222 disease genes clearly deviate from the power

law, skewed significantly toward higher degrees, suggest-

ing that disease genes tend to have more interaction part-

ners. We also examined the clustering coefficient (CC) and

its dependence on degree k. CC measures how first degree

neighbours of the same node interact with each other,

namely, the cliquiness. Again a power law decline with in-

creasing k is evident (figure 2B, r~0.70, p<0.01), suggesting

that the network is of modular structure (Barabasi and Oltvai,

2004). Here the known disease genes once more deviate

from the average behaviour of all genes in the genome,

skewed toward higher CC at the same degree k, with a

much shallower slope (0.67 versus 0.93, p~0.00014). This

implies that the disease genes likely form subnetwork mod-

ules with much higher internal interactions than with genes

outside the module.

These characteristics of disease genes are not unique to

T1D, they in fact emulate the results of similar studies of

other diseases, where it was found that disease genes tend

to have larger degrees, more likely to interact with other

disease genes, and share more common neighbours (Tu et

al., 2006; Xu and Li, 2006). These results provide the con-

ceptual basis for candidate gene prediction utilizing PPI with

known disease genes.

Cross Validation of the Candidate Gene Prediction

Algorithm

We first evaluated the performance of the disease gene

prediction algorithm using the known T1D genes as bench

marks. In more detail, each time we randomly select f frac-

tion of known T1D genes as baits, and tested how many of

the remaining 1-f fraction were predicted. We tested for 6

different f values: 1/5, 1/3, 1/2, 2/3, 4/5 and 1, and for each

f value (except f=1, which was only used to calculate the

number of predicted genes, but not for cross validation as

Figure 2: The topological features of the T1D disease genes in the PPI network are distinct from the other genes. (A) The

degree distribution of all proteins follows a power law (r~0.98, p<0.001), with p(k)~k-λ , λ ~1.35, indicating the PPI network

is scale free. The distribution for the candidate genes clearly deviate from the power law, skewed significantly toward higher

degrees. (B) The clustering coefficient (CC) is plotted against degree k. There is a linear decline in CC with increasing k,

suggesting that the network is modular. The distribution of the disease genes again deviate from random genes, with more

interactions among their level-1 neighbours.
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no testing set) we repeated 20 times. Figure 3 summarizes

the results. Evidently the number of predicted genes in-

creases with the number of baits (figure 3A). Interestingly,

the trend seems to slow down as the bait number increases.

This could be due to the limitations of our current knowl-

edge of PPI (incompleteness and quality issues, for ex-

ample), it may also suggest that total number of T1D  dis-

ease genes is limited. Further investigation of this phenom-

enon is needed when we have a  better understanding of

PPI and T1D disease biology. The efficiency to recover the

known disease genes, defined as the odds of disease gene

enrichment in predicted candidates over random, seems to

be affected little by the number of baits, as shown in figure

3B. The high enrichment ratios, at ~17.1 (14.1-18.6) fold

suggest that our baiting algorithm can recover the known

disease genes well.

How much improvement in predictive power did the ad-

dition of PPI information bring in? The 18 known T1D link-

age loci together offer 983 positional candidates. Using the

known disease genes as bench marks, 59 of the 266 T1D

genes are within the linkage regions, thus the linkage data

by itself lead to a 4.5-fold enrichment (p<1e-17, Fisher’s

exact test). If we restrict to only the 9222 genes annotated

in HPRD, 487 are within the linkage region. For the 222

disease genes annotated in HPRD, 52 are within the link-

age regions. The enrichment by linkage information alone is

similar at ~4.4 fold (p<1e-15). Therefore, the PPI with

known disease genes brought in an additional ~4 fold of

enrichment.

Predicted New Candidates

Using all 222 T1D genes (annotated in HPRD) as baits,

we arrived at a list of 68 predicated new candidates, given

in table 1. None of these has been previously associated to

T1D according to T1Dbase. Figure 4 depicts the interac-

tions between all known and predicted T1D genes.

Network Properties

The network properties of the predicted genes are sig-

nificantly different from the average HPRD annotated

genes, and are much closer to the known T1D genes. The

number of interactions among themselves is significantly

higher than random (p<0.00001). In figures 2A and 2B, we

have also included plots of the predicted candidates. Evi-

dently they cluster with the known T1D genes, concentrate

more to the high-degree end (Figure 2A), and share more

first degree neighbours than random (figure 2B).

Functional Properties

In table 2 we listed the top 30 GO molecular function

categories shared among the 222 known disease genes

(p<1e-22), and their statistics in the 68 new candidates.

These categories clearly indicate an involvement of immu-

nity, which is consistent with T1D being an autoimmune

disease. All categories have enhancement ratio above 1,

except for the 4 with very low (0 or 1) representations in

the 68 predicted genes, which are sensitive to random ef-

fect. 14 have enhancement ratio above 2. Putting all GO

Figure 3: The size effect of the bait set. (A) Number of predicted disease genes increases with number of baits. (B) The

efficiency of the disease gene prediction algorithm, as judged by the odds ratio of known disease gene being recovered, does

not depend on the size of bait set.
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Citation in T1D-

related 

publications 

T1D citation, 

excluding co-citation 

with baits 

Gene ID Gene Name 

Linkage 

locus* # of  baits 

PubMed 

Citation 

# p # p 

2099 ESR1 IDDM5 6 783 139 1.49E-27 124 8.3E-19 

7430 VIL2 IDDM5 6 117 30 2.45E-10 29 4.2E-09 

1616 DAXX IDDM1 5 85 7 0.22 6 0.42 

4087 SMAD2 IDDM6 5 172 82 7.2E-41 52 4.2E-18 

5970 RELA IDDM4 5 429 36 0.019 35 0.060 

801 CALM1 IDDM11 4 189 18 0.030 16 0.13 

921 CD5 IDDM4 4 123 2 0.99 1 1 

3118 HLA-DQA2 IDDM1 3 13 0 1 0 1 

3122 HLA-DRA IDDM1 3 123 36 1.6E-13 31 8.9E-10 

4089 SMAD4 IDDM6 3 203 82 1.0E-36 60 3.1E-20 

5336 PLCG2 UN16 3 91 2 0.96 2 0.97 

10524 HTATIP IDDM4 3 65 4 0.51 3 0.75 

156 ADRBK1 IDDM4 2 104 34 5.5E-14 32 6.5E-12 

823 CAPN1 IDDM4 2 101 3 0.92 3 0.94 

931 MS4A1 IDDM4 2 59 0 1 0 1 

3113 HLA-DPA1 IDDM1 2 31 1 0.83 0 1 

5499 PPP1CA IDDM4 2 82 3 0.84 1 0.99 

5883 RAD9A IDDM4 2 60 2 0.85 2 0.88 

5979 RET IDDM10 2 471 12 1 7 1 

6925 TCF4 IDDM6 2 71 10 10 3 0.80 

7277 TUBA1 IDDM13 2 68 13 0.00036 10 0.013 

10589 DRAP1 IDDM4 2 25 0 1 0 1 

23193 GANAB IDDM4 2 25 0 1 0 1 

353091 RAET1G IDDM5 2 3 0 1 0 1 

572 BAD IDDM4 1 138 9 0.39 4 0.96 

1012 CDH13 UN16 1 50 3 0.55 1 0.95 

1374 CPT1A IDDM4 1 60 4 0.45 4 0.50 

2785 GNG3 IDDM4 1 34 0 1 0 1 

2950 GSTP1 IDDM4 1 177 9 0.67 6 0.95 

3111 HLA-DOA IDDM1 1 31 1 0.83 0 1 

3185 HNRPF IDDM10 1 35 0 1 0 1 

3482 IGF2R IDDM5 1 183 3 1 2 1 

3688 ITGB1 IDDM10 1 494 89 1.2E-18 83 2.3E-14 

4054 LTBP3 IDDM4 1 36 7 0.0074 5 0.083 

4094 MAF UN16 1 70 9 0.025 7 0.15 

4142 MAS1 IDDM5 1 53 0 1 0 1 

4221 MEN1 IDDM4 1 107 17 0.00035 16 0.0018 

4311 MME IDDM9 1 133 9 0.35 9 0.43 

4645 MYO5B IDDM6 1 31 0 1 0 1 

5028 P2RY1 IDDM9 1 74 16 2.2E-05 13 0.0013 

5366 PMAIP1 IDDM6 1 37 0 1 0 1 

5790 PTPRCAP IDDM4 1 32 0 1 0 1 

5806 PTX3 IDDM9 1 51 1 0.94 1 0.95 

5867 RAB4A UN1 1 55 1 0.95 1 0.96 

6199 RPS6KB2 IDDM4 1 34 2 0.58 1 0.87 

6520 SLC3A2 IDDM4 1 94 10 0.052 7 0.36 

6747 SSR3 IDDM9 1 16 8 2.3E-05 6 0.0012 

6840 SVIL IDDM10 1 21 3 0.14 2 0.38 

7423 VEGFB IDDM4 1 49 0 1 0 1 

7536 SF1 IDDM4 1 41 8 0.00429 7 0.019 

8325 FZD8 IDDM10 1 27 6 0.0075 5 0.034 

8833 GMPS IDDM9 1 18 0 1 0 1 

9013 TAF1C UN16 1 23 0 1 0 1 
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9063 PIAS2 IDDM6 1 56 5 0.23 3 0.66 

9252 RPS6KA5 IDDM11 1 53 4 0.36 2 0.83 

9352 TXNL1 IDDM6 1 20 0 1 0 1 

9616 RNF7 IDDM9 1 31 1 0.83 1 0.84 

10963 STIP1 IDDM4 1 48 0 1 0 1 

23549 DNPEP IDDM13 1 17 0 1 0 1 

25937 WWTR1 IDDM9 1 18 1 0.65 0 0.65 

30827 CXXC1 IDDM6 1 23 1 0.73 0 0.73 

55048 VPS37C IDDM4 1 14 0 1 0 1 

55867 SLC22A11 IDDM4 1 15 0 1 0 1 

56945 MRPS22 IDDM9 1 19 0 1 0 1 

84064 HDHD2 IDDM6 1 15 0 1 0 1 

135250 RAET1E IDDM5 1 19 0 1 0 1 

154043 CNKSR3 IDDM5 1 10 2 0.13 0 0.13 

170506 DHX36 IDDM9 1 20 0 1 0 1 

 *: most loci were named IDDM#, where IDDM stands for Insulin Dependent Diabetes Mellitus, another name for type 1 diabetes.

Table 1: List of the 68 predicted disease genes.

Figure 4:The PPI network of known (circle) and predicted disease genes (diamond).
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GO term 

# of genes 

in the 68 

list 

# in 

HPRD 
Enrichment rtio 

p 

|1|GO:0002376|immune system process| 9 640 2.2834 0.06 

|2|GO:0006955|immune response| 5 480 1.7634 0.30 

|3|GO:0006952|defense response| 4 397 1.5896 0.35 

|4|GO:0048522|positive regulation of 

cellular process| 
16 748 3.2124 0.0005 

|5|GO:0048518|positive regulation of 

biological process| 
16 835 2.874 0.0015 

|6|GO:0009607|response to biotic stimulus| 2 166 1.871 0.35 

|7|GO:0005102|receptor binding| 4 566 1.0546 0.60 

|8|GO:0031325|positive regulation of 

cellular metabolic process| 
8 313 3.9479 0.0037 

|9|GO:0009893|positive regulation of 
metabolic process| 

8 329 3.7422 0.0049 

|10|GO:0005615|extracellular space| 0 356 0 1 

|11|GO:0042127|regulation of cell 

proliferation| 
3 359 1.275 0.50 

|12|GO:0009611|response to wounding| 3 345 1.3251 0.48 

|13|GO:0009605|response to external 

stimulus| 
4 470 1.2709 0.47 

|14|GO:0008283|cell proliferation| 5 596 1.236 0.46 

|15|GO:0051707|response to other 

organism| 
1 113 1.4804 0.57 

|16|GO:0045321|leukocyte activation| 4 177 3.9334 0.048 

|17|GO:0001775|cell activation| 4 198 3.4324 0.067 

|18|GO:0044421|extracellular region part| 0 507 0 1 

|19|GO:0046649|lymphocyte activation| 4 159 4.3458 0.036 

|20|GO:0005886|plasma membrane| 18 1402 1.8357 1.8357 

|21|GO:0044459|plasma membrane part| 17 1146 2.1285 0.011 

|22|GO:0001816|cytokine production| 2 94 4.1452 0.16 

|23|GO:0005515|protein binding| 42 4552 1.2866 0.15 

|24|GO:0008219|cell death| 9 626 2.0869 0.056 

|25|GO:0016265| death| 9 626 2.0869 0.056 

|26|GO:0006950|response to stress| 8 767 1.5053 0.23 

|27|GO:0051239|regulation of multicellular 

organismal process| 
4 241 2.6416 0.11 

|28|GO:0005125|cytokine activity| 1 180 0.88632 0.74 

|29|GO:0009891|positive regulation of 

biosynthetic process| 
1 58 3.9624 0.36 

|30|GO:0005126|hematopoietin cytokine 

receptor binding| 
0 34 0 1 

Table 2: The top 30 GO categories shared by the 266 known T1D genes, and their presentation in the 68 predicted disease

genes.

terms together, they are significantly (p<1.3e-10) over-rep-

resented in the new candidates.

Protein Sequence Analysis

The function of a protein is determined by its shape and

primary structure (Mulder and Apweiler, 2008). InterPro is

an integrated database of protein families, domains and func-

tional sites. We examined the protein motifs that are over-

represented in the known and predicted disease genes. Listed

in table 3 are the top 10 (Fisher’s exact test, p<1e-16) mo-

tifs shared among the known disease genes. 6 of them are

also over represented in the 68 new candidates. For the

remaining 4, the expected number of genes that share the

motif (i.e. (# of the 9222 that share the motif)/(9222/68)) is

far less than 1 (all below 0.25), therefore we do not have

enough statistical power to determine if they are over rep-

resented or not. Taking the results from the 6 informative

motifs together, it suggests that the predicted genes partici-

pate in similar biological processes as the known T1D genes.
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InterPro ID Short Description InterPro Description 
p, for the predicted 

disease genes 

IPR007110 Ig-like Immunoglobulin-like 0.0004 

IPR013151 Immunoglobulin Immunoglobulin 8.81E-05 

IPR003597 Ig_c1 Immunoglobulin C1 type 7.96E-16 

IPR003006 Ig_MHC Immunoglobulin/major 

histocompatibility 

complex 

1.22E-10 

IPR013568 SEFIR SEFIR * 

IPR000157 TIR Toll-Interleukin receptor * 

IPR004075 IL1_rcpt_1 Interleukin-1 receptor, 

type I/Toll precursor 

* 

IPR001039 MHC_I_alpha_A1A2 MHC class I, alpha 

chain, alpha1 and alpha2 

2.06E-05 

IPR001003 MHC_II_alpha_N MHC class II, alpha 
chain, N-terminal 

2.20E-16 

IPR007775 LST1 LST-1 * 

 *The expected number of genes out of  the 68 that share the motif is far below 1, <0.25. The actual number is 0. Not enough power for statistical analysis.

Table 3: Protein sequence motifs that are over-represented among known and predicted disease genes. Listed are the top 10

motifs shared in the known disease genes at p<2e-16 (Fisher’s exact test), together with their significance in the predicted

ones.

Figure 5: The probability density distribution of normalized T1D citation. Both known (A) and predicted disease genes (B)

are cited significantly (p<1e-33, and p<1e-5, respectively, KS-test) more often in T1D-related publications than random

genes. In the analysis of predicted, cocitations with known disease genes were excluded.

Again immune related sequence features are overrepre-

sented in both the known and predicted genes, consistent

with the fact that T1D is an autoimmune disease.

Literature Support

To investigate the potential T1D relevance of the new

predictions, we further examined the literature citation of

both known and predicted disease genes. For each gene

we obtained the total number of PubMed citations and the

fraction that are T1D-related (according to T1Dbase). For

the predicted genes, one may argue that their appearance

in T1D publications could be a result of their interactions

with the known disease genes, as interacting genes often

appear in the same publications. To address this issue, we

excluded from the analysis of the predicted genes all PubMed

records that have cited the known T1D genes.

We found that out of the 68 new candidates 13 (~20%)

are cited significantly more often than random in T1D pub-

lication at p<0.05 (Fisher’s exact test), as compared to only

~6.9% of the HPRD genes. This is a ~3-fold enrichment.

As a group members of the 68 list are significantly (p<1e-7)

more likely to appear in T1D-related publications than mem-

bers of a random set of 68 genes. Figure 5 presents a more

quantitative evaluation, by plotting the probability density
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distribution of the fraction of T1D-related citations. Inter-

estingly, the citation seems to also follow the power law

approximately. As expected, the distribution for known dis-

ease genes is significantly skewed toward higher T1D-re-

lated citations (p<1e-033, KS-test, figure 5A). Of interest

is the fact that even after removing the co-citations with

the known T1D genes, the newly predicted disease genes

are also cited more often in T1D literature (p<1e-5, KS-

test, figure 5B). These results provide a strong indirect evi-

dence of their potential involvement in T1D.

Number of Interactions with the known Disease

Genes, Possibilities to Prioritize the Predicted Genes?

Out of the 68 novel candidates, more than a third (24)

interact with at least two known disease genes, and about a

sixth (12) interact with at least three. This raises the ques-

tion whether interacting with more disease genes means

higher likelihood of also being a disease gene, and if such

information can be used to further prioritize the prediction.

This is intuitive as subsets of genes having much more in-

teractions with each other than with others are likely to be

from a same functional network module, and consequently

to be involved in the same physiological processes and dis-

ease phenotypes.

We found that the Pearson correlation between the num-

ber of baits and the significance of T1D citation (-log10(p),

excluding co-citation with the known disease genes) was

~0.45. In figure 6 the fraction of genes with significant T1D-

related citations was plotted against number of baits. A loose

cut-off, p<0.2, was used due to the small number of pre-

dicted genes. A positive monotonic trend is evident. We

also used KS-test to quantitatively evaluate this question.

Using 2, 3 and 4 baits as a cut-off we divided the 68 genes

into groups of low and high number of baits and examined

the significance distribution in each group. We found that

with any cut-off the two groups are different with p<0.032

(2), p<0.019 (3), and p<0.05 (4), respectively. These all sug-

gest that the number of interactions with known disease

genes is likely an indicator of the candidate’s likelihood be-

ing a disease gene.

Figure 7 shows the PPI network of the top 5 candidates

in terms of number of baits. On the top are ESR1 and VIL2,

each with 6 baits (table 1). Interestingly, they are also among

the top in terms of independent citations in T1D-related

publications and network degrees. ESR1, or estrogen re-

ceptor 1, has been cited in 139 (124, after removing co-

citation with known disease genes) T1D-related publica-

tions, which ranked number 1 (1) out of the 68 candidates;

the number for VIL2 is 30 (29), ranked number 8 (7). The

odds ratios to random genes are all greater than 1, at 9.6 for

VIL2 and 6.2 for ESR1, with p~8.2e-19 and p~4.2e-9

(Fisher’s test), respectively. Both have abundant interac-

tions with other proteins, with k=163, #1 of the 68 for ESR1;

and k=43, #11 for VIL2. These are within the top 2% of all

genes, and both can be considered hubs.

ESR1 is within the IDDM5 locus located at 6q25, and has

been purported to be responsible for the linkage (Pietropaolo

and Le Roith, 2001). IDDM5 is one of the few susceptibil-

ity regions that have been replicated in multiple studies

(Pociot and McDermott, 2002). In addition, it is a major

disease gene for type 2 diabetes, and is strongly associated

Figure 6: Candidates predicted by more baits are more

likely to be cited in T1D-related publications.

Figure 7: PPI network of top 5 predictions (ellipse) and

their corresponding baits (round rectangle). Bright magenta

nodes represent genes with significant citation in T1D-re-

lated publications (p<0.01).



Journal of Computer Science & Systems Biology - Open Access
Research  Article      JCSB/Vol.2 March-April  2009

J Comput Sci Syst Biol Volume 2(2): 133-146 (2009) - 143

 ISSN:0974-7230   JCSB, an open access journal

with obesity and lipid metabolism. VIL2 (also known as EZR,

or ezrin), is also located in IDDM5. Compared with ESR1,

it is a much less studied gene. It encodes a cytoplasmic

peripheral membrane protein that plays a key role in cell

surface structure adhesion, migration and organization. It

has been implicated in various human cancers. Its role in

T1D pathogenesis is still not clear, though multiple studies

have linked it in the progression and complication of diabe-

tes (Goh and Cooper, 2008).

The next on the list are three genes that each interacts

with 5 known T1D genes: SMAD2, RELA and DAXX.

The number of independent citations in T1D-related publi-

cations are 52 (#3, p<4.2e-18), 35 (#14, p~0.060), 6 (#21,

p~0.42), respectively. They are all highly connected genes,

degrees all in the top 5% of the 9220 HPRD proteins, with

k=160 (#2 of the 68), k=98 (#5), and k=34 (#14) respec-

tively.

SMAD2 is a member of the SMAD family. Proteins of

this family are signal transducers and transcriptional modu-

lators that mediate multiple signaling pathways. SMAD2

mediates the signal of the transforming growth factor (TGF)-

beta, and thus regulates multiple cellular processes, such as

cell proliferation, apoptosis, and differentiation. TGF-beta

plays a central role in activation of inflammation, and in the

regulation of anti-islet CD8+ T cells by the CD4+CD25+ T

regulatory cells during T1D (Green et al., 2003). The se-

cretion of TGF-beta in recent onset T1D has been observed

to be elevated (Stechova et al., 2007). RELA is also known

as p65. Its protein is involved in the forming of the NFêB

complex. NFêB1 or NFêB2 is bound to REL, RELA, or

RELB to form the NFêB complex. The NFêB1 (p50)/ RELA

(p65) heterodimer is the most abundant form of the com-

plex. NFêB activation has been implicated in the protection

of target cells against apoptosis by a variety of death effec-

tors, including cytokine mediated β-cell death (Chang et al.,

2003). DAXX, death-associated protein 6, is in the extended

MHC region (IDDM1). There is evidence of its involve-

ment in the T1D disease pathways in patients displaying

intermediate risk DQ-DR haplotypes (van der Slik et al.,

2007). It binds the receptor of TGF-beta and modulate the

TGF-beta apoptotic-signalling pathway (Perlman et al.,

2001). It physically interacts with the insulin-sensitive glu-

cose transporter, GLUT4 (Lalioti et al., 2002).

Discussion

Increasing evidence suggest that interacting proteins of-

ten share similar function, and participate in the same bio-

logical pathways and processes (Oti and Brunner, 2007).

Therefore mutations in genes coding for them could lead to

similar disease phenotypes. These facts indicated that PPI

information alone may offer a simple, efficient means to

annotate protein functions and to prioritize candidate genes

for complex human diseases (Oti et al., 2006). In this study

we carried out a comprehensive PPI network analysis of

the known T1D disease genes. We found that they cluster

in the high degree region, more likely to interact with each

other, and share more common interaction partners. We then

examined the potential of using PPI with known disease

genes in prioritizing the positional candidates of T1D. Among

the 983 genes within the 18 T1D linkage loci, 68 are first

degree PPI neighbours of the known T1D genes, which we

defined as the new candidate disease genes. Cross valida-

tion indicates that the approach is ~17.1 fold better than

random selection to recover disease genes. Examination of

the new candidates revealed that they share with the know

disease genes a significant amount of GO categories and

protein sequence motifs that are known to be important to

autoimmunity. Furthermore, they are cited significantly more

often in T1D-related publications, independent from their

co-citation with the known disease genes. These all provide

indirect support for their candidacy.

Here we only used the direct interaction relationship

among genes. More sophisticated features, such as topo-

logical overlap (Zhang and Horvath, 2005), average distance

to disease genes, positive topological coefficient (Xu and

Li, 2006), are worthy of consideration in future research.

Our analysis of the novel candidates rely heavily on the

present protein and gene annotation databases, and the avail-

able literature report of studies related to T1D. Therefore it

is likely limited by the quality of the PPI and linkage data,

and the current understanding of the T1D aetiology. Not all

the 266 known T1D genes can be consistently replicated in

different populations, nor the 18 linkage regions (Atkinson,

2005). The recently published genome wide association stud-

ies (GWAS) only confirmed a few of the previously identi-

fied regions whilst offering evidence for yet several new

regions (Hakonarson et al., 2007; The Wellcome Trust Case

Control Consortium, 2007; Todd et al., 2007). There is a

tendency presently to consider the GWAS results being the

ultimate verdict and view previous findings that not con-

firmed by GWAS as false positives. If so, most of the 266

genes and the 18 regions could be false positives. It is rather

intriguing then the new candidates predicted by our algo-

rithm show strong evidence in their potential involvement in

T1D, especially the independent citation in T1Drelated pub-

lications. Here we would like to emphasize that the GWAS

studies are only adequately  powered to detect very com-

mon alleles unless they greatly increase disease risk, and

explains little the genetic variation of disease. The intricacy

κ κ

κ κ

κ
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of complex human diseases itself further compound the in-

terpretation of the results from genetic studies. Population

difference, disease heterogeneity, the genetic mechanism

of the disease including alleles with small effect sizes, epi-

static interaction, epigenetic inheritance, copy number varia-

tion, etc, all raise the question of how much reliance one

should give to a individual type of genetic data obtained from

a certain population, including the GWAS. However, we

believe that by taking an integrative approach, and examine

the convergent predictions, the noise and consequently the

false positives will be reduced, and true signals will be am-

plified. Therefore, before our understanding of the disease

aetiology improves, it is better to be inclusive at the begin-

ning of an integrative approach.

68 candidates may still be too many for association or

functional studies. Further prioritization is needed. The re-

sults of this study suggest that the topological features in

the PPI network with known disease genes, the functional

and sequence information, and the literature citation can

provide further discrimination of the predicated candidates.

For example, it is possible to rank them according to their

position and degree in the PPI network, degree of interac-

tion with known disease genes, citation by T1D-related pub-

lications, protein sequences motif, as well as expression

pattern, and gene ontology. A composite metric could be

defined for candidates based on these properties to describe

their likelihood of being true disease genes. These proper-

ties are not necessarily all independent. As an example, fig-

ure 6 illustrates the potential confounding between number

of interacting disease genes and the number of citations in

T1Drelated publications. Therefore, when designing such

composite measures, sophisticated approaches such as the

Bayesian method, which can handle non-independent fac-

tors, are needed. We are investigating these issues in a sepa-

rate study (manuscript in preparation).

In this study we focused on prioritizing positional candi-

date genes within the linkage loci. By its nature, the ap-

proach can be applied to candidate genes obtained by other

means. With the advancement of the human genome and

the HapMap projects, emerging technological advances

make the GWAS a reality for many laboratories to identify

genetic variants that contribute to common diseases

(Hirschhorn and Daly, 2005; Wang et al., 2005). While

GWAS has the potential to catch all disease genes, sample

size and power issues, among others, still limit its ability to

obtain a complete picture of the genetic risk; or to identify

genes that in combination cause disease predisposition, while

each on its own only contribute moderately to the risk.

GWAS typically produces a large number of potential can-

didate genes. Normally, only markers with extremely low

p-value (usually <~1e-7) are retrieved because of the power

and multiple testing issue. Lowering the threshold will be

plagued with false positives, though it is believed that a re-

gion immediate below the threshold p value harbours many

true disease genes (The Wellcome Trust Case Control Con-

sortium, 2007). These regions need to be investigated to

fully dissect the genetics of complex diseases. The signifi-

cance of novel candidates can be investigated further, by

including the GWAS results in the definition of the compos-

ite likelihood measures of the prioritization scheme. On the

other hand, information obtained from other approaches such

as the PPI networks, can in turn also help the analysis of

the GWAS data. An analytical prioritization scheme that

brings in other evidence potentially will allow one to narrow

down the number of statistical tests to be performed, and to

identify disease genes from the sub optimal p-value regions.
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