Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar
Reach Us +1-947-333-4405

GET THE APP

Multivalent Influenza Hemagglutinin Promotes The Immundominance Of Non-neutralizing Antibody Responses Through Repetitively Constrained Orientation | 51627

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Multivalent influenza hemagglutinin promotes the immundominance of non-neutralizing antibody responses through repetitively constrained orientation

2nd International Conference on Influenza

Daniel Lingwood

The Ragon Institute of MGH, MIT and Harvard, USA

ScientificTracks Abstracts: J Infect Dis Ther

DOI: 10.4172/2332-0877.C1.014

Abstract
Much of the influenza virion surface is occupied by a dense array of trimeric hemagglutinin (HA) that functions to engage sialyloligosaccharide on a target cell. This dense packing of spike protein is also thought to restrict antibody access to the conserved HA stem epitope, a weak immunogenic target for broadly neutralizing antibody (bnAb) responses against this virus. However, recent cryo-EM studies, have suggested that stem-directed bnAbs do not have restricted access to this site. To functionally define the source of weakened immunogenicity to the stem epitope, we compared stem specific antibody responses to three structurallydefined presentations of HA: Soluble trimer and ferritin nanoparticle 8mers displaying either the full-length trimer or stem/stalk region alone. Surprisingly, we found that while the nanoparticles were more immunogenic, only the soluble trimeric format elicited detectable stem-epitope directed antibodies upon initial exposure to antigen. We propose that antigen multivalency, a cornerstone of both vaccine design and viral architecture, imposes not only repetitive array to increase immunogenicity but also restricted antigen orientation, which can limit exploration of antigenic space, insuring that immunodominant non-neutralizing responses are nonlinearly amplified during this process. Repetitive exposure to the soluble HA trimer eliminates reactivity to stem due to amplification of immunodominant non-stem responses; our work shows that multivalent HA display can achieves the same result within a single encounter. These data highlight a previously unrecognized mode of immune distraction and delineate the relationship between antigen valency and the target-specificity of the humoral response.
Biography

Daniel Lingwood is an Assistant Professor at The Ragon Institute of MGH, MIT and Harvard and is a Faculty Member in the Virology Program at Harvard Medical School. He has received his PhD from the Max Planck Institute for Molecular Biology and Genetics and conducted Postdoctoral work at the Vaccine Research Center at NIH. He has garnered international recognition for his discovery that humans possess genetically-encoded antibody sequences that when properly oriented as germline B cell receptors, naturally engage conserved sites of viral vulnerability and serve as substrates upon which broadly neutralizing antibodies can be developed.

Email: dlingwood@mgh.harvard.edu

Top