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The study of heart-lung interaction during mechanical ventilation 
in Acute Lung Injury (ALI) has been a focus in intensive care medicine 
for many years. However, some of the mechanisms by which mechanical 
ventilation adversely affects hemodynamics have not been clarified. 
It is clear that decreased CO is related, at least partially, to the effects 
of external constraint on ventricular filling [1,2]. However, during 
mechanical ventilation, increased pulmonary vascular resistance 
(PVR) may also adversely affect right ventricular (RV), and therefore, 
left ventricular (LV) function [3]. The PVR-lung volume relation is 
U-shaped so that resistance increases at greater lung volumes [4,5].
Large tidal volumes increase PVR and, for a given tidal volume, the
increase in resistance is greater with positive end-expiratory pressure
(PEEP) [6]. Increased resistance to RV output decreases LV preload
not only by series interaction, but also by a leftward septal shift (direct
ventricular interaction (DVI)) [7]. Therefore, if the increase in PVR can
be minimized, for example, by volume loading [7,8] or vasodilatation
with nitric oxide (NO), the adverse effects of decreased RV systolic
performance and reduced LV filling and output by DVI may be limited.

This paper reviews the important relationship between PVR and 
cardiac function during mechanical ventilation in ALI and suggests 
how NO, by reducing PVR, might improve cardiac function. 

Hemodynamic Effects of Acute Lung Injury and PEEP
Oleic acid (OA)-induced ALI can also have hemodynamic 

consequences. Most studies have shown decreased CO [9-12] while a 
few reported no significant change [13-15]. Consistently demonstrated 
have been increases in PVR and mean pulmonary artery pressure 
(mPPA) [9-12,16-18]. Ehrhart et al. [19] using an isolated canine lung, 
attributed the increase in PVR to vascular obstruction presumably 
caused by large fatty acid globules which tend to lodge in and completely 
obstruct vessels. Increased alveolar volume with the application of 
PEEP may also mechanically compress pulmonary microvasculature 
with more pronounced resistance observed in a lower pressure system 
(Zone 2 conditions). Henning et al. [16] demonstrated significantly 

increased lung water content and PVR with 20 cmH2O PEEP in OA-
injured dog lungs. The increased lung water was attributed to increased 
microvascular hydrostatic pressure and impaired fluid drainage by 
pulmonary lymphatics caused by PEEP. However, in a pulmonary 
hypertensive model, a moderate level of PEEP could prove beneficial 
as unloading a saturated RV by redistributing blood to the periphery 
(decreasing venous return) could effectively reduce further edema 
formation that may have otherwise occurred due to elevated PPA’s. 
Hofman et al. [10] highlighted the importance of describing changes 
in PVR and consequent effects on both ventricular performance and 
lung function as PVR tends to decline over time in survivors but is 
maintained or further elevated in non-survivors. The importance of 
PVR is also supported by clinical studies that have shown improved 
cardiac function by pharmacological reduction in RV afterload (PVR) 
in Acute Respiratory Distress Syndrome (ARDS) [20,21]. Monitoring 
PVR at the bedside may prove to be a valuable diagnostic and prognostic 
tool that may be currently underutilized. 

Pulmonary Vascular Resistance and Direct Ventricular 
Interaction

DVI can be viewed as the interaction of both ventricles via the 
septum. Because the heart is surrounded by the acutely non-distensible 
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Abstract
Treatment of patients with Acute Lung Injury (ALI) can be challenging. Mechanical ventilation is often required 

and can have significant adverse cardiovascular effects. Clinicians and research scientists have been able to utilize 
an experimental model of ALI/Acute Respiratory Distress Syndrome (ARDS) that can mimic much of the clinical 
sequelae. This model has provided the opportunity to systematically test best care practices and clarify the important 
cardiopulmonary interaction during mechanical ventilation. During mechanical ventilation with positive end-expiratory 
pressure, increased pulmonary vascular resistance (PVR) may adversely affect right ventricular (RV) function, and 
therefore, left ventricular (LV) function. Thus, increased resistance to RV output can result in decreased LV preload 
by series interaction, but importantly, also by direct ventricular interaction (DVI) (leftward septal shift). Therefore, 
if the increase in PVR can be minimized, for example, by volume loading or nitric oxide, the adverse effects of 
mechanical ventilation on cardiac function may be limited. This paper will review the possible cardiac consequences 
of elevated PVR through DVI during mechanical ventilation in ALI, and suggest potential benefits of reducing PVR.
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pericardium, changes in filling pressure of one ventricle may affect the 
other which, may alter output [22]. For example, when pulmonary 
artery pressure (RV afterload) is increased, RV end-diastolic pressure 
(PRVED) can increase more than LV end-diastolic pressure (PLVED) 
[23,24]. Since the end-diastolic septal position is determined by 
the transseptal pressure gradient (PLVED – PRVED = TSG) [25,26], the 
resultant decrease in the TSG shifts the septum to the left. If the LV 
anteroposterior dimension does not change, [27-29] (which is often but 
not always true) the decrease in LV end-diastolic volume due to DVI is 
caused by the septal shift alone. 

Previous studies of DVI during mechanical ventilation with 
steady-state measurements have yielded varying results. Fewell et al. 
[30] reported a decrease in both LV and RV end-diastolic volumes 
with increasing levels of PEEP. Conversely, Jardin et al. [3] published 
impressive data supporting the importance of this mechanism in 
cardiopulmonary interaction. They demonstrated a major leftward 
septal shift with increasing PEEP. However, the level of PEEP used 
in their study (>20 cmH2O) is seldom applied clinically. Cassidy et 
al. [27] using biplane cinefluorography for ventricular dimensional 
analysis, demonstrated a significant decrease in LV dimension with a 
concomitant increase in the RV dimension with increasing levels of 
PEEP (0-15 cmH2O). Rankin et al. [31] have also demonstrated DVI 
associated with an increased PVR and RV afterload with increased 
intrathoracic pressure during a dynamic increase in airway opening 
pressure to 15 cmH2O. Presumably, as intrathoracic pressure is 
increased with PEEP, there is displacement of blood volume from 
the heart and lungs to the periphery. The increased impediment to 
RV filling would be additional to the direct lung compression in 
determining diastolic filling. The relationship between PEEP and PVR 
also needs to be considered. In general, increasing levels of PEEP will 
increase PVR [11,32-35]. When PVR is plotted against lung volume, a 
U- shaped relationship occurs with the nadir falling somewhere around 
the functional residual capacity value [4]. At lower lung volumes, the 
extra-alveolar vessels become compressed due to the elastic recoil forces 
of the lung parenchyma that cause the PVR to rise. As we normally 
do not utilize residual volume during respiration, fluctuations in PVR 
would normally fall somewhere on the post-nadir, ascending limb of 
the curve corresponding to changes in tidal volume. At these volumes, 
the extra-alveolar vessels can increase in diameter by radial traction 
while the alveolar vessels become compressed and, thus, contribute 
most to resistance. 

Hemodynamic Consequences of Increased Pulmonary 
Vascular Resistance

With increased tracheal pressure/lung volume, there is potential for 
PVR to increase enough to have important hemodynamic consequences. 
Increased PVR, through its effect on the RV, may result in minimizing 
the decrease, or even increasing, RV end-diastolic volume despite the 
decrease in the overall size of the heart [12,36-39]. As a result, in addition 
to the effects on series interaction (the term “series interaction” is used 
to characterize the fact that the output of one ventricle affects filling, 
and therefore output, of the other), increased RV afterload also has the 
potential to limit LV filling (preload) and output by DVI (most often by 
a leftward septal shift) and even cause RV failure (acute cor pulmonale) 
during mechanical ventilation [12,36,38,39]. In fact, we have observed 
periods of acute RV failure when PVR was high in our animal work [7]. 
Furthermore, our results suggested that PVR was closely related to RV 
and LV performance and volume loading, by reducing PVR (by either 
recruitment of pulmonary vessels or increased transmural pressure 
in the pulmonary vasculature or both), improved RV and, therefore, 

LV performance by series interaction and DVI (the TSG increased, 
which implies that rightward septal shift (DVI) also contributed to the 
increased LV preload). This was supported in a recent clinical study by 
Fougeres et al. [8] who assessed the hemodynamic effects of high PEEP 
with a subsequent increase in central blood volume in 21 mechanically 
ventilated ARDS patients. RV end-diastolic area (echocardiography) 
and PVR (flow-directed catheter) increased and cardiac index (CI) 
decreased with increased PEEP [5 ± 1 (SD) to 13 ± 4 (SD) cmH2O], 
with 3 of 21 patients exhibiting acute cor pulmonale. Consistent with 
our observations, their findings also suggest that PEEP decreased 
CI by increasing RV afterload rather than by decreasing RV preload; 
increasing central blood volume by passive leg raising decreased PVR 
and the RV to LV end-diastolic area ratio (consistent with DVI) and 
increased the CI, which implies that reduced RV afterload contributed 
to the improved CO. Despite these findings, the contribution of PVR 
to heart-lung interaction by DVI during mechanical ventilation is not 
often considered. 

Nitric Oxide and Pulmonary Vascular Resistance
Reducing PVR has the potential to improve cardiac function by 

several mechanisms resulting in improved RV systolic function and 
increased LV preload and output. However, a changing PVR and the 
subsequent effect on CO is difficult to define as the ordinate parameter 
(CO) is the denominator of the abscissa parameter (PVR), therefore the 
resultant hyperbolic relationship is predetermined. Patient studies have 
shown that the specific pulmonary vasodilatory effect of NO can be used 
to treat hypoxemia in ALI primarily by reducing PVR and improving 
the matching of ventilation with perfusion [40-43]. Hemodynamically, 
pulmonary arterial vasodilatation and the resultant reduction in PVR 
may decrease RV afterload thereby improving RV systolic function. 
This could have the effect of improving LV filling (series interaction 
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Figure 1A: Depicts different potential causes resulting in increased PVR. In-
creased RV afterload (PVR) may result in decreased RV output and a substan-
tially increased PRVED. The lack of an equal increase in PLVED shifts the septum 
leftward resulting in deceased LV preload and output by DVI.
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Figure 1B: Depicts the potential reversal of decreased LV output by interven-
tions that tend to reduce PVR. PEEP, positive end-expiratory pressure; PRVED, 
RV end-diastolic pressure; PLVED, LV end-diastolic pressure; TSG, transseptal 
pressure gradient; DVI, direct ventricular interaction.
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and improved DVI) and subsequent LV output by the Frank-Starling 
mechanism. Although many studies have shown a reduction in PVR 
with a focus on how NO can improve oxygenation, many have been 
constrained at providing a broad and in-depth hemodynamic analysis. 
Okamoto et al. [42] showed no change in CI after NO was administered 
(only 4ppm) with increasing levels of PEEP (0, 5 and 10 cmH2O) in 11 
ARDS patients. Of note, the PVR index in their study only changed 
significantly at PEEP 0 cm H2O after NO was administered. The lack of 
a reduced PVR index and improved CI may have been due to the low 
dose of NO used. It is our contention that if future NO experimental 
studies were to show significant reductions in PVR with concomitant 
improvements in cardiac function, it would highlight the importance 
of PVR in modulating ventricular performance. 

Conclusion
The OA-induced ALI model is a well established tool that can be 

used to evaluate strategies in the management of ALI/ARDS patients 
during mechanical ventilation. Importantly, some data suggests that 
a reduction in PVR may be related to improved cardiac function and 
patient outcomes. Reduced PVR may be an important mechanism 
by which vasodilator therapy with NO improves cardiac function in 
ventilated patients with ARDS. We suggest the possibility that PVR may 
be a good target to help titrate NO to improve hemodynamics. 
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