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Abstract
The quality of a peptide drug mainly depends on its impurity profile, with the emphasis on the related impurities. 

These impurities may be biomedically active, alter the desired efficacy or induce unwanted toxicity, an aspect which 
is termed the “functional quality” of the peptide drug. Therefore, regulatory authorities have set up guidances or 
have legally established specification limits to assure a consistent purity of these peptide drugs. For the active 
pharmaceutical ingredients (APIs), the pharmacopoeial monographs are legally binding. Additional information can 
be found in regional and international guidelines. For the finished pharmaceutical drug products (FDPs) containing 
peptide active ingredients, only general guidelines are available. The construction of a complete related-impurity 
profile is very challenging due to the wide availability of different protecting groups, coupling agents and additives that 
may be used during peptide synthesis. In addition, chemical degradation, occurring during synthesis, formulation or 
at storage, may occur as well, including not only so-called pure chemical degradation but interaction with excipients 
as well. This review provides an update of the regulatory and scientific rationales behind the related impurities in 
peptide drugs.
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Introduction
Peptides are becoming key players in the pharmaceutical industry, 

gaining more and more attention as possible diagnostics or therapeutics. 
Worldwide, more than 60 peptides are marketed, 270 are in clinical-
phase testing and 400 in advanced preclinical phases. It is thus obvious 
that peptides show a great promise as drugs [1]. Although peptides 
demonstrate a high biological activity in combination with low toxicity 
and high specificity compared to small molecules, they suffer from low 
stability, low oral bioavailability and delivery issues [1-4]. They cannot 
be considered as conventional small organic molecules because of their 
building-blocks system, relative large molecular weight and physico-
chemical characteristics, requiring specific ways of synthesis and care 
in the formulation. This handling complexity may result in related by-
products, which are likely to be biologically active. Since the safety of a 
drug product is dependent not only on the toxicological properties of 
the active drug substance, but also on the toxicological properties of its 
impurities, there is an ever-increasing concern over these impurities 
present in active pharmaceutical ingredients (APIs) and finished drug 
products (FDPs)[5,6]. 

Impurities may be process- or product-related, originated during 
synthesis, manufacturing, or storage and should be characterized to the 
necessary extent. For example, in the discovery phase, they are also to 
be evaluated for their biological activity in order to avoid false positives 
or negatives due to the presence of these impurities [7-10]. This step is 
crucial in the evaluation of biomedical activity since these impurities 
may be more active compared to the main component or even alter 
activity.

Impurity profiling (i.e. the identity as well as the quantity of 
impurities in the pharmaceutical drug) is now gaining critical attention 
from regulatory authorities in order to assure and control the quality. 
The different Pharmacopoeias, such as exemplified by the European 
Pharmacopoeia (Ph. Eur), United States Pharmacopeia (USP), 
International Pharmacopoeia (Ph. Int.) and Indian Pharmacopoeia 
(IP) are defining specification limits for reporting, qualification and 
identification of impurities present in the APIs or FDPs formulations, 
based upon found levels in approved market samples [11-14].These 
principles are based on the ICH guideline Q3A(R), which stipulates 
different thresholds or action limits based upon the maximum daily 
dose (MDD).

Next to the presence of synthetic impurities, peptide substances 
or finalized products may be chemically unstable. Degradants are 
produced already during synthesis, purification or manufacturing, but 
mainly during storage.

Regulatory framework

From a regulatory quality perspective, several texts have to be 
considered in setting proper impurity specifications against which the 
quality of peptide drugs is evaluated with the final purpose to make a 
release decision. Releasing a pharmaceutical product implies that the 
quality is sufficiently high and consistent, as justified in the approved 
marketing authorization (MA) dossier, so that the probability of 
unwanted and unexpected harm to the patient is minimised. At a 
global level, the ICH quality guidelines, adopted by the European 
EMA, the US FDA and the Japanese PMDA and widely followed by 
the rest of the world, including the WHO, describe how to deal with 

impurities and specification settings in an international regulatory 
environment, i.e. sensu stricto only at the phase of preparing the 
submission of a MA application [15-17]. These guidelines are to be 
combined with regional laws and guidelines, as well as the regional 
and/or national pharmacopoeia. Recently, the Ph. Eur. has extended its 
mandatory general monograph ‘‘Substances for pharmaceutical use” 
[18]with an explanatory general chapter 5.10 ‘‘Control of impurities in 
substances for pharmaceutical use” [19]. While these are sensu stricto 
only applicable to substances explicitly monographed in the Ph. Eur., 
the analytical procedures and/or acceptance criteria described therein 
are clearly a rational basis for other drug substances and drug products 
not described in the Ph. Eur. as well [5,6].

All Ph. Eur. monographs, but not the general chapters, are legally 
binding as stated in Directive 2001/83/EC [20]. The Ph. Eur. as well as 
the other pharmacopoeia give limits of impurities in its API-specific 
monographs, based upon the impurity profiles found in APIs of products 
already on the market and thus in clinical use. Therefore, the API-
specific pharmacopoeialmonograph reflects the current status of an API 
quality. Besides the API-specific monographs, there are the mandatory 
general monographs which need to be combined with the API-specific 
monograph. If this specific or general monograph is explicitly referring 
to a general chapter, then this general chapter becomes mandatory as 
well. Hence, for example, the specific monograph of buserelin API [21]
is to be combined with the general monograph 2034 of ‘‘Substances for 
pharmaceutical use” [22], which is also mandatory and which refers 
to the general chapter 5.10 about impurities. This general chapter on 
impurities reflects the principles of the ICH guideline Q3A and gives a 
decisional flowchart for interpretation.

Last, ICH-Q3B deals with impurities, arising from degradation or 
interaction, in the finished drug products (FDP). While the settings 
of specifications was, and still can be, a challenge and often a matter 
of debate, there has been an evolution towards a consensus around 
the above mentioned ICH guidelines. In principle, the API synthesis 
impurities which cannot be degradants in the FDPs are sensu stricto 
not required to be incorporated in the FDP specifications as they are 
verified at the API level. However, for transparent consistency and 
analytical interpretation reasons, the FDP may encompass all related 
impurities, i.e. not only the degradants and interaction products, but 
also the API-synthesis impurities. Moreover, independent, external 
inspections will in practice also consider all related impurities. This 
principle of a complete impurity profiling in the FDPs is also followed 
by the International Pharmacopoeia.

As a typical example, the Ph. Eur. monograph on buserelin 
[21] defines 5 specified impurities, which are thus controlled by the 
monograph and limited as well. No other detectable impurities (ODIs) 
are given in the transparency section at the end of the monograph. 
The general acceptance criterion defined by the specification limit of 
‘any other impurities’, is 3%, i.e.more than the applicable identification 
threshold of 0.5% (Table 2034-2 of monograph 2034), while the 
disregard limit is 0.1%, identical to the reporting threshold as defined in 
the general monograph 2034. Following the explanatory chapter 5.10, 
this means that each of the specified impurities A, B and C are limited 
to 3%, while impurities D and E combined are limited to 3%. For the 
unspecified impurities of buserelin, i.e. HPLC peaks not attributable 
to impurities A to E and which are above the reporting threshold of 
0.1%, a specification limit of 0.5% must be applied. Last, a total related 
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impurity limit of 5% is applied, serving as a boundary limit, and in 
consistency with the buserelin assay underlimit of 95.0% (anhydrous, 
acetic acid-free substance).

If peptides are not chemically produced, but are prepared by 
biological procedures like products of recombinant DNA technology 
or fermentation, then additionally, other pharmacopoeial monographs 
and ICH guidelines are to be consulted as well for proper setting 
impurity specifications.

It is important to note that the above regulations are sensu stricto 
only applicable in a good manufacturing practice (GMP) environment, 
where quality by design (QbD) risk assessments are promising scientific 
tools for further efficient drug development (ICH Q8 to Q11 [23-26]). 
The strict boundary between GMP and “non-GMP” R&D environment 
is expected to disappear in the future. Nevertheless, strictly speaking, 
in current R&D environment, especially in the discovery phase, no 
detailed guidances exist about the quality (e.g. impurity profile) of the 
test items apart from very general statements in the GLP regulations for 
formal non-clinical studies [27,28].

Peptide synthesis

Different technologies exist for the production of peptides, ranging 
from extraction from natural sources, production by recombinant 
DNA, synthesis in transgenic animals or plants, chemical synthesis and 
enzymatic synthesis [1,2,29]. Apart from financial considerations, the 
size of the peptide appoints the most suitable technology. Recombinant 
DNA is particularly applied for the synthesis of large peptides (e.g. 

insulin, calcitonin and glucagon), while enzymatic synthesis is confined 
to very small peptides containing less than 10 amino acid residues (e.g. 
LVVH-7, VV-hemorphin-7 and glutathione). Chemical synthesis 
remains the gold standard for the production of peptides ranging from 
5 to 50 amino acid residues. Although the synthesis was originally 
performed in solution, after introduction of the solid-phase synthesis 
mode by Merrifield, this latter method gained more interest [29,30]. 

Chemical Synthesis
Solution

This method is useful for the synthesis of small peptides consisting 
of only a few amino acid residues. The major advantages consist of 
easy isolation and purification of intermediates after each synthesis 
step, better reaction kinetics and the ability to easily characterize 
intermediates by physical methods such as mass spectrometry and 
nuclear magnetic resonance (NMR).The main drawback remains the 
solubility of the protecting groups in order to perform the coupling 
reaction. Currently, this peptide synthesis method is only rarely used 
and replaced by solid-phase synthesis [29,31].

Solid-phase peptide synthesis (SPPS)

SPPS employs an inert and insoluble resin onto which amino acids 
are attached as a growing chain. Synthesis starts by attaching the first 
amino acid onto the resin, followed by step-wise coupling of additional 
amino acids, involving a series of deprotecting, coupling and washing 
steps (see Figure 1 for a general scheme). The coupling-deprotection is 
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Figure 1: General solid-phase peptide synthesis scheme.
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repeated until the desired amino acid sequence has been synthesised 
[29]. Many advantages over the solution method exist: reaction can 
be automated, solubilisation problem is absent due to linking to the 
resin, rapid synthesis, excess of reagents are added to drive reaction 
to completion, and reagents and solvents are easily washed away by 
filtering the resin [29,32,33]. Currently, solid-phase peptide synthesis 
remains the most reliable pathway. However, compared to synthesis 
in solution, it may be difficult to adapt the solution phase chemistry 
to a solid-phase format, the progress of the reaction can be difficult to 
monitor, peptide purification is only possible after cleaving the peptide 
from the resin, racemisation can occur during synthesis, side chains of 
the amino acids need to be protected [29,33]. Several synthesis strategies 
are developed relating to the choices of the resin, the protecting groups, 
the coupling reagents and cleavage procedure.

The resin is a solid support consisting of a polymer, which 

should be chemically inert and stable, mechanically robust, easily 
filterable and accessible to solvents. Classically, resins are beads of 
polystyrene (PS) that have been cross linked with divinyl benzene 
(DVB), but currently, different resins are derivatised with functional 
groups [29,33]. Additionally, a linker may be introduced to attach 
the first amino acid to the resin and minimise the influence of the 
resin on the synthesis. The linker should be stable during synthesis 
and selectively removed to release the product. Acid-sensitive linkers 
contain an acetal, benzyl or trityl functional group and are cleaved by 
acids like TFA due to the formation of carbocations. Depending on 
the linker, different functionalities are incorporated [34]. The standard 
supports in SPPS are the Merrifield resins, which are chloromethylated 
PS-DVB linkers to which a wide variety of additional linkers and 
amino acids can be attached [35]. The Wang resin, consisting of a 
p-benzyloxybenzylalcohol support, is another very popular SPPS 
support [36]. Possible benzhydryl linkers are benzhydrylamine(BHA) 
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Figure 2: Transient and permanent protecting groups for amino acids: tBoc-Z (a) and Fmoc-tBu (b).
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Amino 
Acid Side chain group tBoc-strategy Fmoc-strategy

Arg R-NH-C=NH-NH2 Tos/Mts/NO2/tfa/Z/Alloc Tos/Pmc/Pbf/Mts/Mtr/MIS/
bis-tBoc/Suben/Sub/MeSub/NO2/tfa/Z/Alloc

Asn R-CONH2 Trt/Xan Trt/Xan/Mtt/Cpd/Mbh/Tmob

Asp RCOOH OBzl/Bn/cHx/Men/Fmoc/Dmab/Al/
pNB/Dmnb

OtBu/Bn/cHx/tBu/Men/Mpe/
2-Ph-iPr/TEGBz/TEGBn/Dmab/Al/pNB/
PTMSE

Cys R-SH
Meb/Mob/Bn/tBu/1-Ada/Fmoc/Dnpe/
Acm/PhAcm/StBu/Npys/S-Pyr/
Alloc/oNB/4-picolyl/Nin

Meb/Mob/Trt/Mmt/Tmob/Xan/Pmbf/Bn/tBu/
1-Ada/Acm/PhAcm/StBu/oNB/4-picolyl

Gln R-CONH2 Trt/Xan Trt/Xan/Mtt/Cpd/Mbh/Tmob

Glu RCOOH Bn/cHx/Men/Fmoc/Dmab/Al/pNB/
Dmnb

Bn/cHx/tBu/Men/Mpe/2-Ph-iPr/TEGBz/
TEGBn/Dmab/Al/pNB/PTMSE

His

N

N

R

Tos/Doc/Bom/Fmoc/Dmbz/Dnp Trt/Mtt/Mmt/tBoc/Bom/Dmbz

Lys R-NH2

Cl-Z/Z/Alloc/oNBS/dNBS/Troc/Dts/
pNZ/Poc/oNZ/NVOC/NPPOC/
MNPPOC/HFA/Fmoc/ivDde/tfa/Msc/
TCP/Phdec/Pydec/Ddiv

Cl-Z/tBoc/Z/Alloc/oNBS/Troc/pNZ/oNZ/
NVOC/NPPOC/MNPPOC/Azoc/Mtt/
ivDde/TCP/Phdec/Pydec

Met R-S-CH3 tBu/Acm/StBu Trt/Tmob/ Mmt
Ser R-OH Bn/cHx/TBDPS/Dmnb/Poc Bn/cHx/tBu/Trt/TBDMS/Pseudoprolines/ TBDPS/Dmnb/Poc
Thr R-OH Bn/cHx Bn/cHx/tBu/Trt/TBDMS/Pseudoprolines

Trp
N

H

R

For/Hoc/Mts/Alloc tBoc/Hoc/Mts

Tyr R-Ph-OH Bn/Dcb/BrBn/Z/BrZ/Pen/Al/oNB/Poc Bn/tBu/Dcb/BrBn/Pen/Trt/2-Cl-Trt/TBDMS/
TEGBz/TEGBn/Al/oNB/tBoc-Nmec

Table 1: Protecting groups for the side chains of different amino acids.

resin and methylbenzhydrylamine (MBHA) resin [37,38]. Trityl linkers 
are also described, which are highly acid-labile supports [39]. The 
Rink amide resin (4-(2’,4’-dimethoxyphenyl-Fmoc-aminomethyl)-
phenoxymethyl) contains also phenoxymethyl groups [40]. In general, 
the majority of these linkers are acid-labile and thus the product 
is cleaved in acid conditions, whereby the operational conditions, 
influencing the purity as well, vary widely depending upon the resin-
linker type. 

Next, a wide variety of protecting groups (PG) exists and is be-
ing discovered to protect the amino group (transient PG) as well as 
side chain groups (permanent PG). The two main transient protecting 
groups are fluorenylmethyloxycarbonyl (Fmoc) and tert-butyloxycar-
bonyl (tBoc), which can be combined with tert-butyl (tert-Bu) and ben-
zyl, permanent protecting groups respectively (Figure 2). Because these 
protecting groups are labile under basic or acidic conditions, a pyru-
voyl group was synthesised, which is compatible with the acid-labile 
benzyl protecting group and is easily cleaved without side reaction [41]. 
In addition, specific protecting groups are being developed: cyclohexy-
loxycarbonyl (Hoc) protects the indole ring from oxidation and alkyla-
tion in Trp-containing peptides [42]. Another protecting group devel-
oped to protect tryptophan is 4-(N-methylamino)butanoyl (Nmbu) 
[43]. Water-soluble N-protecting groups are being described as well: 

methylsulfonylethyloxycarbonyl, 2-phosphonioethyloxycarbonyl,  
2-(triphenylphosphonio)isopropyloxycarbonyl, 2-(4-pyridyl)ethyloxy-
carbonyl, 9-(2-sulfo)fluorenyloxycarbonyl and 2-[phenyl(methyl)sul-
fonio]ethyloxycarbonyl tetrafluoroborate. However, the latter cannot 
be used for methionine and cysteine [32]. Currently, protecting groups 
containing selenium are developed, which seems a very promising pro-
tection technique [44]. An overview of the protecting groups used for a 
specific amino acid according to the tBoc versus Fmoc synthesis strate-
gies is presented in Table 1 [45].

In the next synthesis step, in order to couple the different amino 
acids, the carboxyl group is activated with coupling agents, such 
as carbodiimides (e.g. dicyclohexylcarbodiimide DCC), phosgene, 
anhydrides, esters, acylphosphonium salts (BOP and PyBOP) and 
uranium salts (HBTU, HATU and TBTU) (Figure 3). This way, reactive 
compounds as acid chlorides, anhydrides, carbonic anhydrides or 
esters are formed, which facilitate the production of the peptide bond 
[46-50]. 

Additives may be added in order to reduce possible epimerisation 
during peptide bond formation and fasten the coupling reaction. 
Mostly 1-hydroxy-benzotriazole (HOBt) is added because of its high 
reactivity, specificity and coupling yield. Other possible additives are 
1-hydroxy-7-azabenzotriazole (HOAt), hydroxysuccinimide (HOSu) 
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Monograph Specified impurities Other detectable impurities
Ph. Eur. 7.3-07/2011:1077 ‘Buserelin’ [2-D-histidine]buserelin -

[4-D-serine]buserelin

Buserelin-(3-9)-peptide

[5-D-tyrosine]buserelin

[1-(5-oxo-D-proline)]buserelin

Ph. Eur. 7.3-01/2008:0471 ‘Calcitonin (salmon)’
USP33 p1747

Acetylcalcitonin (salmon) -

[9-D-leucine]calcitonin (salmon)

Des-22-tyrosine-calcitonin (salmon)

O-acetylated calcitonin (salmon)

Salmon calcitoninylglycine {rDNA only}

[1,7-bis(3-sulpho-L-alanine]calcitonin (salmon) {rDNA only}

[1,7-bis(3-sulpho-L-alanine]calcitoninylglycine (salmon) 
{rDNA only}

Ph. Eur. 7.3-07/2009:0712 ‘Desmopressin’
USP33 p2075

-
Oxytocin

[5-L-aspartic acid]desmopressin

[4-L-glutamic acid]desmopressin

[9-glycine]desmopressin

[8-L-arginine]desmopressin

N5.4-[(acetylamino)methyl]desmopressin

N4.5-[(acetylamino)methyl]desmopressin

N1.9,N1.9-dimethyldesmopressin

R0-CEP 2002-058-Rev 00: Lipotec desmopressin
[valid = R1-CEP 2002-058-Rev 02 – BCN Peptides]

[6-D-cysteine]desmopressin (0.5%) -

aspartic acid-dehydrated desmopressin (0.5%)

Ph. Eur. 7.3-01/2008:1634 ‘Felypressin’ S1,S6-bis[(acetylamino)methyl]-(reduced felypressin) -

[5-aspartic acid]felypressin

bis(reduced felypressin) (1,6’),(1’,6)-bis(disulfide)

bis(reduced felypressin) (1,1’),(6’,6)-bis(disulfide)

N1-acetylfelypressin

[4-glutamic acid]felypressin

Ph. Eur. 7.3-01/2008:0827 ‘Gonadorelin acetate’
USP33 p2519

- -

Gonadorelin free acid

R0-CEP 2005-022-Rev 00: Bachem gonadorelin 
acetate
[currently valid]

[2-D-histidine]gonadorelin (0.5%) -

[5-D-tyrosine]gonadorelin (0.5%)

Ph. Eur. 7.3-01/2008:1636 ‘Goserelin’ [4-D-serine]goserelin -

[6-[O-(1,1-dimethylethyl)-L-serine]goserelin

[9-D-proline]goserelin

1-carbomoylyl-2-[5-oxo-L-prolyl-L-histidyl-L-tryptophyl-L-
seryl-L-tyrosyl-O-(1,1-dimethylethyl)-D-seryl-L-leucyl-L-
arginyl]diazane

5-oxo-L-prolyl-L-histidyl-L-tryptophyl-L-seryl-L-tyrosyl-
O-(1,1-dimethylethyl)-D-seryl-L-leucyl-L-arginyl-L-
prolinohydrazide

[5-D-tyrosine]goserelin

[2-D-histidine]goserelin

[1-(5-oxo-D-proline)]goserelin

endo-8a,8b-di-L-proline-goserelin

endo-8a-L-proline-goserelin

O4-acetylgoserelin

[7-D-leucine]goserelin

Ph. Eur. 7.3-01/2008:0907 ‘Gramicidin’
USP33 p2528

[4-methionine]gramicidin A1 -

Gramicidin A1 3-hydroxypropyl

Gramicidin B2

[10-methionine]gramicidin C1

Gramicidin A2 3-hydroxypropyl

Ph. Eur. 7.3-01/2008:1637 ‘Bovine insulin’
USP33 p2639

-
A-21 desamido insulin 

-
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Ph. Eur. 7.3-01/2011:0838 ‘Human insulin’
USP33 p2642
IP2010

- -

A-21 desamido insulin 

-

Ph. Eur. 7.3-01/2008:2085 ‘Insulin lispro’
USP33 p2644

- -

A-21 desamido insulin lispro

Ph. Eur. 7.3-01/2008:2084 ‘Insulin aspart’ - -

Ph. Eur. 7.3-01/2008:1638 ‘Insulin porcine’
USP33 p2639

-
A-21 desamido insulin

-

Ph. Eur. 7.3-07/2010:2215 ‘Iodixanol’ USP33 p2660 - -

Ph. Eur. 7.3-01/2008:1442 ‘Leuprorelin’
USP33 ‘Leuprolide’ p2761

[4-D-serine]leuprorelin [3-D-tryptophane]leuprorelin

[2-D-histidine]leuprorelin [2-D-histidine,4-D-serline]leuprorelin

[6-L-leucine]leuprorelin [5-D-tyrosine]leuprorelin

[4-(O-acetyl-L-serine)]leuprorelin [7-D-leucine]leuprorelin

[1-(5-oxo-D-proline]leuprorelin

[8-[5-N-[imino(1H-pyrazol-1-yl)methyl]-L-ornithine]]
leuprorelin

[4-dehydroalanine]leuprorelin

R0-CEP 2001-454-Rev 01: Bachem leuprorelin
[valid = R1-CEP 2001-454-Rev 01]

Pyr-His-Trp-Ser-Tyr-OH (0.5%)

des-Pro-NHEt9-leuprorelin (0.2%)

unidentified impurity at RRT = 0.87 (0.2%)

Ph. Eur. 7.3-01/2008:0780 ‘Oxytocin’
USP33 p3185
Ph. Int.

IP2010

- -

-

Carbimido oxytocin

Acetyloxytocin

Α-oxytocin dimer
Β-oxytocin dimer

-

Ph. Eur. 7.3-01/2008:1144 ‘Protirelin’ 5-oxo-L-prolyl-D-histidyl-L-prolinamide -

5-oxo-D-prolyl-L-histidyl-L-prolinamide

5-oxo-L-prolyl-L-histidine

5-oxo-L-prolyl-L-histidyl-L-proline

cyclo(-L-histidyl-L-prolyl-)

Ph. Eur. 7.3-01/2011:0949 ‘Somatostatin’ - -

R0-CEP 2005-245-Rev 00: Bachem somatostatin
[currently valid]

unidentified impurity at RRT = 0.68-0.72 (0.5%) -

unidentified impurity at RRT = 0.77 (0.5%)

unidentified impurity at RRT = 0.80 (0.5%)

Somatostatin-(1-14)-peptide (0.5%)

unidentified impurity at RRT = 0.92 (0.5%)

[12-(O-acetyl-threonine)]somatostatin (0.5%)

[13-(O-acetyl-L-serine)]somatostatin (0.8%)

unidentified impurity at RRT = 1.31 (0.8%)

(N-ε-acetyl-lysine)somatostatin (0.5%)

unidentified impurity at RRT = 1.43 (0.5%)

unidentified impurity at RRT = 1.65-1.74 (0.5%)

Ph. Eur. 7.3-04/2010:0644 ‘Tetracosactide’ tetracosactide sulphoxide

unidentified impurity at RRT = 0.95

Ph. Eur. 7.3-01/2011:0580 ‘Aprotinin’
USP33 p1575

Aprotinin-(1-56)-peptide

Aprotinin-(1-57)-peptide

Pyroglutamyl aprotinin

Ph. Eur. 7.3-01/2008:1635‘Human glucagon’
USP33 p2504

- -

Ph. Eur. 7.3-01/2008:0465‘Bacitracin’ USP33 p1620
IP 2010

Bacitracin F

Impurity E

IP2010: Bleomycin
USP33 p1693

Demethylbleomycin A2

Bleomycinic acid

Bleomycin B4
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Table 2: Pharmacopoeial peptides.

or N-hydroxy-5-norbornene-2,3-dicarboximide (HONB) [32,51]. 
An overview of the structures of the frequently applied scavengers is 
presented in Figure 4.

Finally, the peptide is cleaved from the resin after completing the 
peptide sequence. In this step, scavengers like p-cresol, anisole and 
Fmoc-Leu are added to reduce the unwanted side reactions of the 
reactive species like carbocations formed during the acid cleavage. 
However, these scavengers may also lead to the unwanted formation 

of product adducts [10,42]. When producing highly hydrophobic 
peptides, dissolving problems may occur after cleaving the peptide 
from the resin. Solubility can be improved by adding charged residues 
as arginine or by modifying the phenolic alcohol of tyrosine or the 
N-(2-hydroxy-4-methoxybenzyl) (Hmb) protective group with tBoc-
N-methyl-N-[(2-methylamino)ethylcarbamoyl (tBoc-Nmec). This 
way, the Nmec group stays attached to the peptide during cleaving 
and is removed under basic conditions [43]. As large peptides tend 
to fold and adopt a unique three-dimensional structure, synthesis 
may be hampered as well. In order to circumvent this problem, the 
depsipeptide or O-acyl isopeptide method was reported. Here, the 
depsipeptide analogue is attached to the resin instead of the peptide, 
replacing the peptide bond by an ester bond. After completing the 
whole sequence, the O-acyl isomer is converted into the target peptide. 
This way, folding is largely reduced and synthesis is facilitated [52,53].

Chemical ligation is an approach for coupling peptide fragments to 
form the desired peptide sequence and is more interesting for longer 
peptide sequences. This methodology is frequently applied for the 
synthesis of cyclic peptides using the intramolecular ligation reaction 
[54,55].
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Figure 4: Structures of typical scavengers..
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Figure 5: Formation of diketopiperazine during Fmoc-SPPS.

Microwave synthesis

Alternatively to conventional heating, microwave radiation can 
be applied to introduce energy into the peptide synthesis reaction, 
resulting in acceleration of the reaction. The products are dissolved in 
solvents, which convert electromagnetic energy into heat energy due to 
dielectric polarisation. The claimed major advantages of this technique 
are the reduced reaction time and the increased synthesis yield as well 
as purity. However, there is a lack of controllability and reproducibility. 
Moreover, it is generally believed that undesirable side reactions would 
also be accelerated by microwave heating and that some coupling 
reagents are heat sensitive. Nevertheless, SPPS with microwave was 
successfully applied in the synthesis of peptides [56-58].

Enzymatic synthesis

Enzymes are biological catalysts, being active at mild conditions 
(pH 6 to 8), robust and relatively stable (e.g. when using immobilized 
enzymes), stereo-and regioselective and not requiring stoichiometric 
cofactors. The proteases mostly used for peptide synthesis are selected 
based on their specificity towards amino acid residues on each side of 
the splitting point. The major drawbacks of this method compared to 
the chemical solution or solid-phase methods consists of the lower 
productivity, high cost of biocatalysts, broad specificity of the proteases, 
use of non-conventional reaction media and limited validation and 
scale-up protocols exist [29]. Moreover, during peptide synthesis, the 
growing peptide can be simultaneously attacked by the proteases. The 
use of non-aqueous solvents is also limited due to the low activity of 

most enzymes in those solvents. Before starting the synthesis, most 
operational parameters, such as pH, temperature and organic solvent 
concentration should be optimized, making generic automated 
synthesis almost impossible. Thus, enzymatic synthesis is dependent on 
the size of the peptide, being restricted to small hydrophilic peptides. 
The main advantage of this method is the reduced need to protect 
the side chains due to the specificity of the reaction [29,59]. Because 
stoichiometric amounts of coupling reagents are not required and 
racemization does not occur, purification is much easier [60]. Enzymes 
can also be used in the direct coupling of peptide fragments [61].

Recombinant DNA synthesis

The recombinant DNA technology involves insertion of the desired 
protein gene into an expression vector, which contains a promoter 
to express the protein. After synthesis, the recombinant peptide 
material is purified by affinity chromatography. Although, a large scale 
production is possible, the main drawback of this method consists 
of the long and expensive development procedure. Human insulin is 
prepared with this method by inserting the insulin gene into the E. Coli 
bacterial cell. This way, the implanted DNA induces the cell to produce 
insulin [62,63].

Purity of peptides

The importance of performant quality control before starting 
(biomedical) experiments in order to avoid false negative or 
positive results have been reported previously [5,10]. Only selective, 
reproducible, sensitive techniques can be used to determine and 
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quantify the purity of the peptide. Traditionally, reversed-phase HPLC 
with UV detection (RP-HPLC-UV) is applied due to its selectivity, the 
low limit of detection and quantitation, robustness and high sensitivity, 
while the HPLC-MS coupling allows the identification of the possible 
impurities [64,65]. Alternative separation techniques to HPLC may 
include normal-phase HPLC, thin layer chromatography (TLC) and 
capillary zone electrophoresis (CZE), while other detection techniques 
may consist of NMR, fluorescence, refractive index and evaporative 
light scattering [66,67].

As stated in the section above, during synthesis, different side-chain 
protecting groups, activating functional groups or scavengers may 
be added to prevent undesired side-chain reactions. Since chemical 
synthesis reactions are commonly incomplete, not yielding 100%, these 
groups or part(s) of it may remain present or attached to the peptide 
leading to the presence of closely related peptide impurities. In Table 2, 
an overview of the typical peptide impurities currently described in the 
Ph. Eur., USP, IP and Ph. Int. is given [13,68,69].

Next to incomplete removal of the protecting group (tBoc or Fmoc) 
[68], the repetitive TFA treatments represent sources of oxidation and 
alkylation side-reactions for the most sensitive amino acids, such as 
Cys, Met and Trp.

Alkylation by carbocations, generated in the acidolytic cleavage 
step, is the most prominent side-reaction, but a rational choice of 
scavengers will help to minimize unwanted modifications. The extent 
of diketopiperazine formation (Figure 5) can be reduced because the 
N-amino function is protonated and less prone to attack the benzyl 
ester bond after the deprotection reaction in tBoc SPPS compared to the 
situation in Fmoc based SPPS [70]. Another side reaction consists of the 
aspartimide formation in peptides containing the Asp-Gly, Asp-Ala 
or Asp-Ser sequences. This reaction is a result of ring closure between 
the carboxy side chain of Asp and the nitrogen of the carboxamide. 
The produced aspartimides are very susceptible to base-catalyzed 
epimerization and undergo rapid ring-opening reactions, yielding 
mixtures of aspartyl peptides and piperidides as illustrated in Figure 
6 [71-73]. In addition, the C-terminal Met can cyclize to homoserine 
lactone during the HF cleavage if tert-butyl type protecting groups have 
not been cleaved before the HF treatment as shown in Figure 7 [74]. 
N-O shift or O-isoacyl peptide formation (Figure 8) can occur during 
the treatment with strong acid of peptides containing Ser or Thr, but the 
reaction can be reversed by base treatment [75,76]. This intramolecular 
reaction causes a disruption in the secondary structure of the peptide, 
increasing solubility [77]. The γ-carboxyl function of Glu, protonated 
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in strong acid, can lose water and form an acylium ion which will cyclize 
to a pyrrolidone or be trapped by a scavenger such as anisole to yield 
a ketone [78]. The cleavage of the Asp-Pro and Asp-Trp bond (Figure 
9) has been observed during HF treatment [68,79]. The adjacent amino 
acid affects the hydrolytic rate of this cleavage reaction, with Asp-Pro 
being the fastest [80]. Oxidation of Cys, Met or Trp may occur during 
cleavage from the resin in tBoc and Fmoc chemistry, creating a 16 amu 
mass shift [68]. Serine is protected with tert-butyl, corresponding with 
a m/z value of 56. A trityl protecting group is introduced for prevention 
of His, Asn or Gln, shifting the mass with 243 amu. When applying the 
Fmoc chemistry, the 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc) 
group may not be completely removed from Arg or it may alkylate 
Trp, creating an impurity with a mass shift of 266 amu. Formylation 
may occur during tBoc-deprotection causing a mass shift of 28 amu, 
while during Fmoc-synthesis deletions were observed for Asp. For this 
amino acid, acid- as well as base-catalyzed aspartimide formation is 
observed, even when protecting with β-1-adamantyl (1-Ada) group or 
tert-butyl. In order to reduce this side-reaction when using bases, a new 
protecting group was developed: β-3-methylpent3-yl ester [81].

During the protection of Val using Fmoc-oxysuccinimide(Fmoc-
Osu), Fmoc-β-Ala was detected as a major impurity. This 
underestimated contamination is avoided when replacing Fmoc-Osu 
by Fmoc-Cl [82]. In addition, dimers may be formed by a disulfide 
linkage [68]. Impurities having the same molecular weight as the drug 
substance itself represent diastereoisomers [65]. In some syntheses, it 

was even observed that the wrong amino acid was incorporated in the 
peptide sequence [83].

In order to prevent possible side-reactions, scavengers may be 
added. Typical examples are: (thio)anisole, dimethyl sulfide, p-cresol, 
1,2-ethanedithiol, 4-methylindole, thiophenol, 2-mercaptoethanol, 
piperidine or ethylmethylsulfide [68,84]. Anisole is acting as a 
carbocation scavenger, which are created by strong acid cleavage from 
the resin. These carbocations present possible side-reactions as they are 
alkylating species of Cys, Met, Trp and Tyr, containing a nucleophilic 
center [84]. Typically, anisole or p-cresol react with the acylium ion 
formed from the dehydration of the side chains of Asp in strong acidic 
medium, thereby yielding stable ketone impurities [84]. Although 
these scavengers may reduce the occurrence of possible side-chain 
reactions, they may not be completely removed and remain present as 
an impurity.

Dysfunction of deprotecting Trp was reported to leave an anisyl 
group attached to Trp, leading to a mass shift of 107 amu. In addition, 
impurities may be introduced by the solvents used. Although highly 
pure solvents (HPLC grade) are used, they may still contain some 
impurities at low levels, inducing unwanted reactions [67]. In Figure 10, 
some typical examples of impurities observed in synthesized peptides 
are presented. The overview of the possible impurities stipulates 
the importance to investigate peptide impurity before applying to 
(biomedical) analyses in order to prevent false negative/positive 
conclusions. One should be aware that these impurities may induce 
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or alter activity of the compound confounding the conclusions [10,85-
88]. Figure 11 shows the chromatogram of an impure quorum sensing 
peptide, in which the protecting group of Arg was not completely 
removed.

Degradation of peptides

Chemical degradation is residue specific and thus controlled 
by the primary peptide sequence [89]. For example, among the 
amino acids, Asn and Asp are the most unstable residues [90].The 
major chemical degradation reactions are: deamidation, hydrolysis, 
peptide bond cleavage, oxidation, Maillard reaction, β-elimination, 

enantiomerization, isomerization and dimerization [67,90-92]. Next 
to stability issues of the peptide APIs or drug substance, formulated 
finished drug products (FDPs) show also degradation. A formulated 
FDP comprises only one, or a limited number and quatity, drug 
substance and multiple excipients, which are included i.a. to prevent 
degradation during processing and/or storage. Depending on the 
formulation, different stability patterns are observed. Generally, a dry 
formulation is more stable than an aqueous formulation. However, 
these excipients or impurities that are present in the excipients may 
also react with the peptides, inducing degradation [67,91,93,94]. Thus, 
it is crucial to select the most appropriate excipient [95,96].

Figure 11: Chromatogram of the impure quorum-sensing peptide “competence and sporulation factor” with sequence ERGMT. The Pbf protecting group of Arg was 
not completely removed.
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APIs (drug substances)

Deamidation is the main degradation pathway for Asn and Glu to 
produce Asp and Gln, respectively [91]. The reaction is acid-catalyzed 
and thus pH-dependent [89]. First, the side chain of the amide bond 
is hydrolysed, followed by nucleophilic attack of water on the amide 
carbon [89]. In neutral to basic conditions, deamidation proceeds by 
intramolecular nucleophilic attack of the backbone amide nitrogen on 
the side-chain amide carbon, producing a tetrahedral intermediate, 

which degrades to a cyclic imide [89,97]. Figure 12 presents the reaction 
mechanism for the deamidation reaction of Asn to Asp.

Peptide bond cleavage constitutes a second common degradation 
mechanism. This is often observed after Asp residues, where an 
intramolecular attack of the Asp side chain on the C-terminal amide 
nitrogen to form a cyclic anhydride. Although delocalization of the 
electrons is possible, this cyclic anhydride is unstable and is hydrolysed 
to a C-terminal aspartic acid residue [89,98]. 
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The side chains of Met, Cys, Trp and Tyr residues are susceptible 
to oxidation. The mechanism consists of the formation of a Schiff base, 
followed by tautomerization and hydrolytic cleavage to generate the 
aldehyde derivative [91].

When reducing sugars (e.g. lactose) are present, these molecules 
may react with amino or free amine groups via the Maillard reaction. 
Again, this converts to a Schiff base, which cyclizes and isomerizes as 
illustrated in Figure 13. This reaction is usually observed for Lys that 
reacts the most rapidly with reducing sugars, but also for Arg, Asn and 
Gln [67,91,99].

β-elimination of disulfide bonds leads to free thiol groups. Base-
catalyzed cleavage of the C-S bond in Cys results in dehydroalanine 
and thiocysteine, which both degrade further. Dehydroalanine is 
unstable and susceptible to electrophilic addition reactions, whereas 
thiocysteine degrades to free thiol groups [91,100,101].

FDPs (drug products)

Although excipients may be added to protect the peptide, they 
have other properties as well and may cause unwanted degradation by 
forming interaction products. Of course, the same reactions as explained 
for the peptide drug substance may be observed in the formulation 
depending on the storage conditions (moisture, temperature, pH), but 
may be influenced by the micro-environment of the excipients.

Oxidation is known to be metal-catalyzed. In order to reduce 
this side-reaction, anti-oxidants are added to the formulation, but 
in turn these may induce reactions as well. For example, the anti-
oxidant 2,6-di-t-butyl-4-methylphenol (BHT) (1) can be oxidized to 
the corresponding phenoxyl free radical (2), which is able to rapidly 
disproportionate to produce the corresponding quinine methide 
(3), which is strongly electrophilic and expected to be reactive with 
nucleophilic groups like the free amine groups at the N-terminus of the 
peptide (Figure 14) [102,103]. 

Formation of hydroperoxides from polyethylene glycol (PEG) in 
the coating causes electrophilic oxidation. In polymerization processes 
for polymeric ethers, such as PEG, peroxides are present as initiators, 
which may induce oxidation of the drug substance during formulation 
development. This way,  oxidation of Met resulted in the formation of 
Met-sulfoxide [67]. Moreover, impurities present in the excipients are 
found to be responsible for the enhanced oxidative degradation [66]. 
In lyophilized peptide formulations, sugars are the most commonly 
used excipients, but they are known to react with Gly and Arg via 
the Maillard reaction [91]. In addition, polymeric excipients are 
currently investigated as release-modifying excipients, but can show 
chemical interactions with the incorporated peptides. Poly(D,L-
lactide-co-glycolide) (PLG), poly(lactic acid) (PLA) or poly(D,L-lactic 
acid–co-glycolic acid) (PLGA) microspheres are used to encapsulate 
peptides [91]. However, the polyester produces lactic and glycolic acid 
monomers due to hydrolysis. This way, carboxylic acid is accumulated 
and creates an acidic microclimate, initiating acid-catalysed peptide 
degradation [89]. Acylation is a typical example of peptide degradation 
in polymers. Here, peptides react as a nucleophile with the ester bond 
of the polymer forming a tetrahedral intermediate, which is further 
rearranged to produce the acylated peptide [89,104-108]. Previously, 
we optimized the sample preparation steps for salmon calcitonin, 
including the development of a complete quality control and stability-
indicating HPLC method for a polymeric calcitonin formulation. 
Although a temperature-decrease was observed for salmon calcitonin, 
no degradation products were found, suggesting possible chemical 
interaction with the polymer [93].

In addition, racemisation may occur when exposed to heat and 
alkali, involving the removal of the α-proton of an amino acid, forming 
a planar carbanion. The presence of racemised amino acids cannot be 
revealed with ESI-MS seen there is no mass difference, but enzymatic 
digestion in combination with MALDI may resolve the identity [109].

Figure 14: Side-reaction with anti-oxidant BHT.
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Conclusion
Depending on the peptide sequence, different synthesis 

methodologies can be applied. Because solid-phase is the standard 
method to synthesize peptides, the different synthesis steps consists 
of subsequent protecting, coupling and cleavage from the resin. 
During these reactions steps, additional reagents are added, which 
may remain present in the final product. Most chemical reactions are 
not completely finished, thus it is clear that protecting or coupling 
additives remain attached to the peptide. Moreover, the impurities 
may be biomedically active or even alter the peptide’s activity. So, 
it is important to analyze the peptide purity by sensitive analytical 
techniques to make sure the conclusions are correctly interpreted and 
not due to impurities. Therefore, the different regulatory associations 
defined acceptance criteria to assure the quality and safety of a peptide 
drug. In order to assure the quality of peptide drugs, the specifications 
should meet the requirements as described in the pharmacopoeias. 
Although, purification steps are generally included after synthesis, we 
showed that still impure peptides are delivered. In addition, chemical 
degradation of peptides substances as well as finalized drug products 
is observed. Although, excipients are added to avoid degradation, this 
process may still occur or interaction products are produced. So, it 
is crucial to investigate and report the total impurity and degradant 
profile of a peptide drug before starting and interpreting biomedical 
analyses.
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