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Introduction
The radiosensitisation effects of chemotherapeutic agents and 

hyperthermia have been investigated in mammalian normal and 
cancer cell systems growing in vitro with respect to the linear quadratic 
parameters of dose-survival curve [1]. These treatment modalities are 
currently exploited in the clinic. The studies on the different human 
tumour cell lines show that a synergistic interaction can be obtained 
between chemotherapy, hyperthermia and radiation and that this 
interaction is more likely to occur in cell lines which are relatively 
sensitive to chemotherapy. The influence of modifying agents on 
radiation dose survival curves can adequately be analysed with the use 
of the linear-quadratic model: S(D)/S(O)= exp-(αD+βD2). The linear 
parameter, α, represents lethal damage from single particle events and 
describes the low dose area while the quadratic parameter, β, indicating 
sub lethal damage (SLD) dominates the effectiveness in the high dose 
region [2-5]. The radiation dose survival curves have been obtained by 
carrying out clonogenic assays and values of the linear and quadratic 
parameters have been calculated [6].

The linear-quadratic model is based on well accepted biophysical 
concepts, involving the assumption that lethal damage can be induced 
by single-particle tracks and by interaction of damage from multiple 
particles. The LQ-model does not have a current biological basis. 
However, it has been found to describe the low-dose region of the 
survival curves up to 6 Gy rather accurately. Furthermore the LQ-
model has been shown to describe adequately dose fractionation effects 
for normal tissue tolerance and for experimental tumours. The LQ-
model has also the advantage that it requires only two parameters to 
describe radiation dose-survival curves. It allows the separate analysis 
of changes in effectiveness in the low dose range, mainly determined by 
the linear term and in the high dose range determined mainly by the 
quadratic term [7,8]. An additional advantage of the LQ model is that 
its parameters can be discussed in terms of specific mechanisms of cell 
inactivation by radiation [2,3]. 

Materials and Methods
Cell cultures

Several different cell lines have been used in the studies. The human 
squamous lung carcinoma cell line SW-1573 was grown as a monolayer 
in L-15 medium (Invitrogen, Breda, The Netherlands) supplemented 
with 10% heat-inactivated fetal bovine serum (FBS) and penicillin, 
streptomycin and glutamine at 37°C without additional CO2., The 
human ovarian carcinoma cell lines A2780 and its dFdC-resistant 
variant AG6000 were grown as monolayers in DMEM (Invitrogen) 
supplemented with 5% heat-inactivated FBS and with penicillin, 
streptomycin and glutamine at 37ºC at 10 % CO2. The doubling time of 
the human cell lines in exponential growth is 22-24 h.

V79 (hamster fibroblast cells), RUCII (Rat urether carcinoma) and 
R1 (Rat rhabdomyosarcoma) were grown as monolayers in minimal 
essential medium (Invitrogen) supplemented with 10% foetal bovine 
serum, glutamine and penicillin at 37°C at 2% CO2 in exponentially 
growing - and in plateau-phase. The doubling time of these cells is 
about 14 h.
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Abstract
The radio-sensitizing effects of several chemotherapeutic agents and hyperthermia have been investigated in 

several animal and human cell culture systems. Cells are first treated with Cisplatin, Gemcitabine, Halogenated 
pyrimidines or hyperthermia and thereafter irradiated with different dose of radiation up to 8 Gy. After treatment the 
clonogenic survival was determined and from the survival curves the values of the linear and quadratic parameters 
were determined using the formula S(D)/S(O)= exp-(αD+βD2). 

An increase in the value of the linear parameter, α, was observed in most cases, which corresponds to an 
enhanced (potentially) direct lethal damage (PLD) at low doses. The quadratic parameter β, which is assumed 
to depend on the interaction of sublethal lesions (SLD), was rarely affected. Furthermore, it appeared that more 
radioresistant cell lines were more sensitised than the radiosensitive lines. Furthermore it can be concluded 
that radiosensitization is also dependent on cell cycle stage like plateau or exponentially growing phase or post 
treatment plating conditions.
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Chemicals

Platosin® (cis-diamminedichloroplatinum II, cDDP, cisplatin) was 
provided by Pharmachemie (Haarlem, The Netherlands). Gemzar® 
(Gemcitabine, 2’,2’-difluorodeoxycytidine, dFdC) was provided by Eli 
Lilly inc. (Indianapolis, IN, USA). All other chemicals were of analytical 
grade and commercially available. For chemo-therapeutically induced 
radio-sensitizing experiments cells were incubated with: 1) Medium 
containing cisplatin at a concentration of 1 or 5 µM for 1 h before 
irradiation or continuously (In this case cisplatin was present during 
the clonogenic assay). 2) Gemcitabine at a concentration of 10, 50 or 
100 nM, which was added 24 hours before irradiation. Before the start 
of irradiation medium containing gemcitabine was removed, cells were 
washed two times with PBS and fresh medium was added. 3) Medium 
with Iodo-deoxyUridine (IdUrd). For these experiments cells were 
incubated for 72 h with 0 or 4 µM of IdUrd and 2.5 µM thymidine was 
added to mimic the average level of thymidine in rodent plasma.

Hyperthermia

Hyperthermia was carried out in thermostatically regulated 
waterbath at 41 or 43°C for 60 min.

The atmosphere of the waterbath was adjustable by a connection 
with air and CO2 supplies. Hyperthermia treatment was performed 
directly before the irradiation.

Irradiation

Irradiations were performed with single doses of γ-rays from a 
137Cs source at a dose rate of  0.7 Gy/min. 

Clonogenic assay for radiosensitivity

After treatment, the cells were trypsinized directly (ip) or 24 
after irradiation (dp) and replated in appropriate dilutions in 6-well 
macroplates (6). Eight to ten days after inoculation colonies were fixed 
in 6% glutaraldehyde and stained with 0.05% crystalviolet. Colonies of 
50 cells or more were scored as originating from a single clonogenic 
cell. Surviving fractions (S(D)/S(0)) after dose (D) were corrected for 
the toxicity of dFdC alone (S(0)) and survival curves were analyzed 
using SPSS (Chicago, IL, USA) statistical software by means of a fit of 
the data by a weighted, stratified, linear regression, according to the 
linear-quadratic formula: S(D)/S(O)= exp-(αD+βD2).

Cisplatin

Cisplatin is a widely used anti-cancer drug, often combined with 
radiotherapy [9]. Chemo-radiation application based on cisplatin 
has now become the standard treatment for, among others, locally 
advanced cervical carcinoma [10] and locally advanced non-small 
cell lung cancer (NSCLC) [11]. There have been many studies on the 
radiation sensitizing effect of cisplatin, but results vary from a clear 
cisplatin-induced radiosensitization [12-15] to only an additive effect 
on cell survival [16]. Cisplatin and radiation have in common that their 
cellular target is DNA [17]. 

Cisplatin causes DNA damage by the formation of inter- and 
intrastrand adducts [18]. The cisplatin-DNA adducts can cause cell cycle 
arrest, inhibition of DNA replication and transcription, and eventually 
apoptosis [19]. Repair inhibition of DNA has also been implicated 
[20] The most important repair pathways reported to be involved in 
cisplatin-induced DNA damage repair are nucleotide excision repair 
(NER) and/or homologous recombination (HR) [21,22]. An additional 
route for the repair of cisplatin-DNA interstrand adducts is the post-
replication/translation repair pathway which helps the cell to tolerate 
or bypass the lesion [23]. Irradiation causes repairable (potentially 
lethal) and non-repairable (lethal) lesions to the DNA which are 
induced independently. The ultimate effect of the repairable lesions 
depends on competing processes of repair and misrepair. The repair 
of the potentially lethal damage (PLDR) is reflected by the difference 
in survival between immediately and delayed plated cells. Inhibition 
of PLDR is implicated to play a role in cisplatin-induced radiation 
sensitization [14]. More specifically, cisplatin-induced radiation 
sensitization has been shown to occur through inhibition of the non-
homologous end joining (NHEJ) pathway and recombinational repair 
[18,22,24]. 

The radiation sensitization of cisplatin on the lung tumour cell line 
SW1573 and the cervical tumour cell line Siha is described as changes 
in linear and quadratic parameters of radation dose survival curves. 
In Figure 1 the survival curves are shown for SW1573 lung tumour 
cells after radiation alone and after radiation combined with cisplatin 
treatment (1 μM for 1 h). Cisplatin was added to the cultures just before 
radiation. The survival curves are obtained directly (ip=immediately 
plated) and 24 h after (dp=delayed plated) treatment to determine 
potentially lethal damage repair. A slight, but statistically significant 
effect of cisplatin on the radiosensitivity was only observed in delayed 
plated cells (p = 0.02). This was also described by an increase in the α- 
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Figure 1: Radiation survival curves of confluent cultures of SW-1573 cells plated immediately after irradiation, ip (left) or 24 h after irradiation, dp (right) with or without 
1µM cisplatin treatment for one hour. Means with standard errors of at least three experiments are shown.
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and β-value (Table 1). Only for the delayed plated cells an increase with 
a factor of 2.5 for the value of α was obtained by cisplatin treatment. For 
both plating conditions an increase with a factor of 1.2 was obtained for 
the value of β. In the Table 1 also the effects on the linear and quadratic 
parameters of different plating conditions are presented as well as a 
1 h incubation with 1 or 5 μM cisplatin and a continuous incubation 
with cisplatin during the complete duration of the clonogenic assay. It 
is obvious that the cervical tumour cells Siha are more radiosensitzed 
with 1 μM continous cisplatin incubation than the SW1573 lung 
tumour cells.

Gemcitabine

Gemcitabine (dFdC, Difluorodeoxycytidine) is a deoxycytidine 
analogue with clinical activity in non-small cell lung cancer (NSCLC) 
and pancreatic cancer [25-27]. It requires phosphorylation to 
its active metabolites, gemcitabine-diphosphate (dF-dCTP) and 
gemcitabine-triphosphate (dF-dCTP), with the initial phophorylation 
by deoxycytidine kinase (dCK) being the rate limiting step [28,29]. 
The dF-dCTP inhibits ribonucleotide reductase which regulates the 
production of deoxynucleotides necessary for DNA synthesis and 
repair [30]. The depletion of the deoxynucleotides leads to an increased 
incorporation of the dF-dCTP into DNA, blocking DNA synthesis 
(masked chain termination). After incorporation of the dF-dCTP into 
the DNA an increase in the number of DNA single-strand breaks, 
chromosome breaks and micronuclei has been observed [31]. 

Both in vitro and in vivo studies have shown that gemcitabine 
is a potent radiosensitizer [29,32-37]. However, in an early study in 
non-small cell lung cancer patients, concurrent gemcitabine and 
radiotherapy resulted in unacceptable pulmonary toxicity related to 

the large volume of radiation delivered to the lung [38]. More recent 
ongoing phase I trials show that concurrent gemcitabine at lower doses 
and radiotherapy is feasible without severe pulmonary toxicity [26,39]. 
Its unique mechanism of action, its lack of overlapping toxicity and 
its favourable toxicity profile define gemcitabine as an ideal candidate 
for combination therapy [26]. Currently many randomized studies are 
ongoing in which gemcitabine is combined with radiotherapy.

Gemcitabine radiosensitization is studied in a gemcitabine 
sensitive and resistant human lung tumour cells, SWp and SWg, resp., 
and in gemcitabine sensitive and resistant human ovarian tumour cells, 
A2780 and AG6000, resp. [40-42]. Gemcitabine was given 24 h before 
radiation treatment. The SWp is in fact similar to the SW1573 cell line 
which has been described above. It is called here SWp to distinguish 
it from SWg, the gemcitabine resistant counterpart which has been 
developed by van Bree et al. [40] The lung tumour cells have different 
sensitivities to radiation alone as compared to the ovarian cancer cells 
[40,41].

 In Table 2 the linear and quadratic parameters of the different 
cell lines obtained after analyses of the radiation dose survival curves 
for radiation alone and after combined radiation and gemcitabine 
treatment are summarized. SWp and SWg were almost equally 
sensitive to ionizing radiation alone with respect to the low dose region 
described by the α-value of the linear quadratic formula (Table 2). A 
slight increase in survival was observed in SWg cells in the high dose 
region which was reflected by a slightly lower β-value of the linear-
quadratic formula (0.040 ± 0.006 vs 0.055 ± 0.008). The human ovarian 
carcinoma cell line A2780 and its gemcitabine-resistant variant AG6000 
were equally sensitive to ionizing radiation. The surviving fractions of 
the different cell lines after incubation with gemcitabine alone are: SWp 

Cells Treatment α (Gy-1)
control

β (Gy-2)
control α -enhanc factor β -enhanc factor

SW1573 ip sham 0.21 ± 0.09 0.061 ± 0.016
1 μM cisplatin (1h) 0.21 ± 0.08 0.072 ± 0.018 1.0 1.2

SW1573 dp sham 0.10 ± 0.09 0.063 ± 0.016
1 μM cisplatin (1h) 0.25 ± 0.09* 0.077 ± 0.017 2.5 1.2

SW1573 ppi sham 0.37 ± 0.12 0.014± 0.034
1 μM cisplatin
(cont) 0.41 ± 0.08 0.019 ± 0.025 1.1 1.4

5 μM cisplatin
(cont) 0.58 ± 0.20* 0.030 ± 0.008* 1.6 2.1

Siha ppi sham 0.41 ± 0.04 0.01 ± 0.01
1 μM cisplatin (cont) 0.81 ± 0.12* 0.02 ± 0.02 2.0 2.0

Sham is radiation only; ip=immediately plated; dp=delayed plated; ppi=plated prior to irradiation. *Significant from sham p<0.05.
Table 1: Values of the linear-quadratic parameters α and β and enhancement factors from SW1573 and Siha cells treated with ionizing radiation only and after combined 
radiation cisplatin (1 μM for 1h; 1 μM continuously; 5 μM continuously) treatment.

Cells Treatment α (Gy-1)
control

β (Gy-2)
control α -enhanc. factor β -enhanc. factor

SWp sham 0.10 ± 0.03 0.055 ± 0.008
10nM gemcitabine 0.30 ± 0.06* 0.053 ± 0.007 3.0 0.96

SWg sham 0.09 ± 0.02 0.040 ± 0.006
100µM gemcitabine 0.09 ± 0.03 0.090 ± 0.041† 1.0 2.25

A2780 sham 0.80 ± 0.10 na
10nM gemcitabine 1.10 ± 0.15* na 1.4

AG6000 sham 0.83 ± 0.13 na
50µM gemcitabine 1.11 ± 0.20† na 1.3

Significant difference with *P<0.01, †P<0.05, na is not applicable
Table 2: Values of the linear-quadratic parameters α and β and enhancement factors from cells treated with ionizing radiation only and gemcitabine-sensitized radiation 
dose survival curves of gemcitabine-sensitive (SWp and A2780) and gemcitabine-resistant (SWg and AG6000) cells.
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10 nM: 0.52 ± 0.06; SWg 10 μM: 0.95 ± 0.03, 100 μM: 0.24 ± 0.11; A2780 
2 nM: 0.82 ± 0.08, 10 nM: 0.21 ± 0.08; AG6000 20 μM: 0.62 ± 0.07, 50 
μM: 0.22 ± 0.04. 

As can be observed in Figure 2 and Table 2 radiosensitization is 
observed with gemcitabine-sensitive as well as in gemcitabine resistant 
cells. For the resistant cells much higher gemcitabine doses are needed 
for the radiation sensitization to result in similar cytotoxicity. Both 
gemcitabine-sensitive cell lines SWp and A2780 are sensitized by 
incubation with 10 nM of gemcitabine for 24 h before irradiation while 
the SWg and AG6000 are not sensitized with this dose of gemcitabine. 
The sensitization is described by an increase in the α-values with factors 
of 3 and 1.4 respectively, whereas the β-values are not significantly 
altered. Higher concentrations of Gemcitabine (50 and 100 nM resp.) 
are required to sensitize gemcitabine-resistant AG6000 and SWg cells 
to irradiation. For the SWg cells, the radiosensitization was reflected by 
an increase by a factor of 2.25 in the value of β, whereas in the AG6000 
only the α-value was increased by factor of 1.3. 

Iodo-deoxyUridine (IdUrd)

Incorporation of halogenated pyrimidines (HPs), chloro-, bromo- 
and iodo-deoxyuridine (CldUrd, BrdUrd, IdUrd) into DNA is known 
to sensitise cells to ionizing radiation [43-51]. Halogenated pyrimidines 
are incorporated into the DNA replacing the thymidine. The induced 
radiosensitisation increases with the degree of thymidine-replacement. 
The mechanism of radiation sensitisation by the HPs has been suggested 
to be either an increase in the amount of DNA damage induced by 

radiation, an influence on repair of sublethal damage (SLD), and/or 
an enhanced expression of potentially lethal damage (PLD) [43,52]. 
Since different processes are involved in these phenomena several 
mechanisms might contribute to the radiosensitisation. 

HPs have been suggested to provide an advantage in radiotherapy 
as radiosensitisers of cells in rapidly growing tumours, in particular 
in clinical conditions in which critical normal tissues show limited 
proliferation and as a consequence take up less HP. Labelling depends 
on the growth fraction, cell loss, cell cycle time and potential doubling 
time. Of special importance for sensitisation is the rate at which non-
cycling cells are recruited into the proliferative compartment during 
exposure to HPs and a course of radiotherapy. However, even in 
rapidly growing tumours, cells may, after proliferative cycles, move 
into a non-proliferative stage. This might compromise the degree of 
radiation sensitisation if resting cells are less affected by HPs, or are 
better able to cope with additional damage by repair of PLD. 

Here the results of radiosensitization after incubation with 4 μM 
IdUrd for 72 h are presented. IdUrd-induced radio sensitisation was 
obtained in all studied cell lines, SW-1573 (human lung cancer), 
RUCII (Rat urether carcinoma), R1 (Rat rhabdomyosarcoma) and V79 
(hamster fibroblast cells), in exponentially growing and in plateau-
phase cells. Survival curves of SW-1573 cells are presented in Figure 3. 
Values of α and β derived by linear-quadratic analyses of survival curves 
of exponentially growing cells and plateau-phase cells are presented 
in Table 3. The plating conditions of the V79 cells, i.e. exponentially 
growing cells plating before or after irradiation (ppi or pai resp.), 
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 Figure 2: Radiation sensitization after 24 h incubation with different concentrations of gemcitabine in gemcitabine sensitive SWp and resistant SWg lung tumour cells 
and in gemcitabine sensitive A2780 and resistant AG6000 ovary cancer cells. Surviving fractions are corrected for gemcitabine toxicity alone (for values see text). 
Cells are plated immediately after irradiation. Means with SEM of at least three separate experiments are shown.
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Figure 3: Radiation dose-survival curves of SW-1573 human lung cancer cells exponentially growing (left) without IdUrd (open triangles) and after incubation with 4 
M IdUrd (closed triangles) and in plateau-phase (right) plated immediately after irradiation (dashed lines) and plated 24 h after irradiation (solid lines) without IdUrd 
(open symbols) and after incubation with 4 µM IdUrd (closed symbols). Each point represents the mean value of 3 different experiments ± sem.

Cell line α (Gy-1)
control

β (Gy-2)
control

α (Gy-1)
IdUrd-sens

β (Gy-2)
IdUrd-sens

α -enhanc 
factor

β -enhanc 
factor

SW 1573 cells 
Exp growing ip 0.22 ± 0.01 0.022 ± 0.001 0.83 ± 0.06 na 3.8

SW 1573 cells 
Plateau phase ip 0.17 ± 0.03 0.042 ± 0.004 0.31 ± 0.03 0.047 ± 0.005 1.8 1.1

SW 1573 cells 
Plateau phase dp 0.09 ± 0.02 0.046 ± 0.002 0.37 ± 0.04 0.033  0.006 4.1 0.7

RUCII cells 
Exp growing ppi 0.008 ± 0.007 0.025 ± 0.001 0.06 ± 0.02 0.026 ± 0.001 7.5 1.04

R1 cells 
Exp growing ppi 0.23 ± 0.01 0.068  0.003 0.44 ± 0.05 0.075 ± 0.016 1.9 1.1

V79 cells 
Exp growing ip 0.18 ± 0.02 0.017 ± 0.003 0.38 ± 0.04 0.023  0.007 2.1 1.4

V79 cells
Exp growing ppi 0.15 ± 0.02 0.013 ± 0.003 0.29 ± 0.03 0.016  0.004 1.9 1.2

V 79 cells
Plateau phase ip 0.09 ± 0.03 0.026 ± 0.004 0.17 ± 0.02 0.062  0.005 1.9 2.4

V 79 cells
Plateau phase dp 0.07 ± 0.02 0.020 ± 0.002 0.30 ± 0.03 0.024  0.004 4.3 1.2

Means with SEM of at least three separate experiments are shown. ip=immediately plated after irradiation; dp=delayed plated after irradiation; ppi=plated prior to 
irradiation; na=not applicable.
Table 3: Values of the linear-quadratic parameters α and β and enhancement factors of several cell lines treated with ionizing radiation only and after sensitization with 
iododeoxyuridine (incubation with 4 μM IdUrd for 72 h).

and plateau phase cells plated immediately or 6-24 h delayed after 
irradiation (ip or dp resp.) had no influence on the factor of increase of 
the α-value. It is shown that the value of the linear parameter, α can be 
enhanced by a factor of 1.9 to 7.5 and that in general low values of α are 
enhanced more than higher values of α. The value of β is less enhanced 
and the enhancement factor ranges from 0.7 to 2.4.

The direct comparison between immediate and delayed plating 
of plateau-phase cells and between plateau phase and exponentially 
growing cells shows significant quantitative differences. The data on 
the linear and quadratic parameters described here provide various 
new insights in the interpretation of radiosensitisation of delay 
plated plateau-phase cells. It is demonstrated that in delay plated HP-
sensitized plateau phase cells PLD is not abolished.

Hyperthermia

Hyperthermia refers to heat treatments if cells or malignancies 

in which the temperature is elevated in the range of 39°C to 45°C. It 
is used in combination with chemo- and/or radiotherapy since it is 
has been shown to enhance the anti-cancer effects of both therapies 
[53-57]. Many in vitro studies on the combination of hyperthermia 
and radiation have shown a synergistic interaction between the two 
modalities, especially at higher temperatures (above 42ºC) [58-60]. This 
interaction is believed to result from inhibition of repair of radiation-
induced DNA damage by hyperthermia [61,62]. The sequence of 
combined radiation and hyperthermia treatment is important. 
Optimal sensitization is obtained when radiation and hyperthermia are 
applied simultaneously or with a short interval [63]. In the clinic this 
is not always possible. In our experiments hyperthermia was applied 
immediately after radiation treatment.

Despite the clinical goal to reach (cytotoxic) temperatures as high as 
43ºC, tumour temperature distributions are in practice heterogeneous. 
In large areas of the tumour temperatures are often lower than 43ºC. 
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Nonetheless, good results have been obtained in locally advanced 
cervical cancers with tumour temperatures below 43ºC [54]. Mild 
temperatures have more subtle effects than high temperatures, such 
as tumour-reoxygenation [64-67]. Recently it has been shown that 
hyperthermia (42ºC for 1h) transiently breaks down the BRCA2 protein 
[68]. In this paragraph the effects of hyperthermia treatment for 1h at 
41 or 43°C on the linear quadratic parameters are summarized. Several 
different cell types have been studied. 

Effect of hyperthermia treatment on radiosensitivity of RKO 
cells: The RKO cells, derived from human colon cancer, are relatively 
sensitive to hyperthermia treatment. Hyperthermia treatment for 1h at 
43ºC decreases the relative survival to less than 0.01 and combination 
with radiation doses in excess of 5 Gy always resulted in a situation in 
which no colony formation was observed.  Treatment  of cells  with  
41ºC  hyperthermia  (1h)  alone  had  little  effect and resulted in a 
surviving fraction of 0.8 ± 0.4 in immediately plated (ip) cells and of 0.9 
± 0.1 in delayed plated (dp) cells. When cells were treated at 41°C for 1h 
immediately prior to irradiation, a significant (p < 0.001) enhancement 
of cellular radiosensitivity was observed both in ip (Figure 4) and dp 
(Figure 4) cells. 

  The effects of hyperthermia on the LQ parameters are summarized 
in Table 4. The value of the linear parameter α increased by a factor 1.7-
1.8 while the value of the β parameter even increased with a factor as 
high as 2.5-7.0. One must bear in mind that the quadratic component 

in this cell line is very small and small changes can have large on the 
numerical values of β.

Effect of hyperthermia treatment on radiosensitivity of SW-
1573 cells: SW-1573 cells are derived from a human lung tumour 
and are much less sensitive to hyperthermia treatment than RKO 
cells. Studies were performed to evaluate whether pretreatment with 
hyperthermia at 41°C or at 43°C in SW-1573 cells was able to enhance 
the radiosensitivity of these cells. Hyperthermia treatment at 41°C 
for 1h without radiation did not result in a decrease of the surviving 
fraction for ip and dp cells as compared to radiation alone. One hour 
hyperthermia treatment at 43 ºC decreased survival to 0.5 ± 0.1 for 
ip and to 0.4 ± 0.2 for dp cells. Pre-treatment of cells at 41°C for 1h 
did not alter cellular radiosensitivity of both ip and dp cells (Figure 
5). However, 1h treatment at 43°C resulted in a significant (p < 0.001) 
radiation enhancement both in ip and dp cells (Figure 5). In Table 4 
the values of the linear-quadratic parameters for radiation alone and 
for combined treatments are given. Hyperthermia treatment for 1 h at 
41°C did result in an increase of the value of β by a factor 1.3-1.8 while 
the value of α even decreased. Hyperthermia treatment for 1 h at 43°C 
result in an increase of the value of α by a factor 2.3-4.4 while the value 
β increased with a factor 1.8-2.0. 

Discussion and Conclusion
In most cases an increase of the α-component was observed which 

 
 

 

 

 

 

 

 

 

 

 
 

0 2 4 6 8
10-5

10-4

10-3

10-2

10-1

100

control dp
41°C dp

Dose, Gy

S
ur

vi
vi

ng
 fr

ac
tio

n

0 2 4 6 8
10-5

10-4

10-3

10-2

10-1

100

control ip
41°C ip

Dose, Gy

S
ur

vi
vi

ng
 fr

ac
tio

n

Figure 4: Radiation survival curves of confluent cultures of RKO cells (human colon cancer cells) plated immediately after irradiation, ip (left) or 24h after irradiation, 
dp (right) with or without hyperthermia pre-treatment at 41ºC for 1h. Means with standard errors of at least three experiments are shown.

Cells Treatment α (Gy-1)
control

β (Gy-2)
control α-enhanc factor β-enhanc factor

RKO ip sham 0.55 ± 0.09 0.02 ± 0.01
HT 41 1h 0.93 ± 0.09 0.05 ± 0.02 1.7 2.5

RKO dp sham 0.47 ± 0.09 0.01 ± 0.01
HT 41 1h 0.83 ± 0.08 0.07 ± 0.02 1.8 7.0

SW1573 ip sham 0.21 ± 0.02 0.06 ± 0.02
HT 41 1h 0.06 ± 0.02 0.11 ± 0.03 0.3 1.8
HT 43 1h 0.49 ± 0.04 0.12 ± 0.03 2.3 2.0

SW1573 dp sham 0.09 ± 0.02 0.06 ± 0.02
HT 41 1h 0.05 ± 0.02 0.08 ± 0.02 0.6 1.3
HT 43 1h 0.40 ± 0.04 0.11 ± 0.03 4.4 1.8

Sham=control is radiation only; ip=immediately plated; dp=delayed plated. 
Table 4: Values of the linear-quadratic parameters α and β and enhancement factors from cells treated with ionizing radiation only and after combined radiation and 
hyperthermia treatment.
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corresponds to an enhanced (potentially) direct lethal damage (PLD) 
at low doses. The β-component, which is assumed to depend on 
the interaction of sublethal lesions (SLD), was rarely affected by the 
studied radiosensitization agents. Moreover, it appeared that more 
radioresistant cell lines were more sensitised than the radiosensitive 
lines. Furthermore it can be concluded that radiosensitization is also 
dependent on cell cycle stage like plateau or exponentially growing 
phase or post treatment plating conditions [69].

It is shown that cisplatin causes radiosensitization as measured by 
clonogenic survival, but only after allowing a potentially lethal damage 
repair (PLDR) time of 24 hours. These results are in agreement with 
those of Wilkins et al. [70] who investigated the effect of cisplatin 
and radiation on PLDR in confluent cultures of two different brain 
tumor cell lines. Wilkins et al. [71] also observed no radiosensitization 
by cisplatin in immediately plated cells whereas a cisplatin-induced 
radiosensitization was seen in cells plated eight hours after irradiation. 
Their results indicate that the radiosensitizing effect of cisplatin occurs 
through the inhibition of post-irradiation recovery. The strongest 
inhibition of PLDR was achieved when cisplatin was administered 
shortly before or after irradiation [70]. In our experiments, cells were 
irradiated while cisplatin was present in the medium.

Results from studies using exponentially growing cell cultures 
vary from a cisplatin-induced radiosensitization [11-13,71] to only 
an additive effect [9,11,72-74]. The effect of cisplatin treatment on 
radiosensitivity may depend on the cell type used. Loprevite et al. [11] 
observed synergism in a squamous lung carcinoma cell line when 
exposed to cisplatin, whereas an adenocarcinoma of the lung was not 
sensitized by cisplatin. Even cell lines derived from a single biopsy can 
differ in the response to cisplatin and radiation combination therapy 
[74].

Although dependence on cell cycle phase [75,76], cisplatin 
incubation time and the sequence of treatment modalities have been 
implicated [9,75,76], there is currently no consensus to account for the 
varying response of cells to cisplatin and radiation.

The mechanism of cisplatin induced radiosensitization might be due 
to the inhibition of the DNA repair, NHEJ and HR, pathways [19,24]. 
The Ku protein complex, which plays an important role in NHEJ, 
was demonstrated to show a reduced ability to translocate on DNA 
containing cisplatin-DNA adducts compared with undamaged DNA. 

This resulted in a decreased interaction between Ku and DNA-PKcs [77] 
However, the biochemical processes that cisplatin undergoes in the cell 
are complex and the intracellular fate of cisplatin may be linked to 
copper transport [78]. Therefore, other processes such as the formation 
of peroxy complexes inside the cell might be involved in cisplatin-
induced radiosensitization [14,79]. Bergs et al. [14] demonstrated an 
increase in the induction of apoptosis after combined treatment as 
compared to radiation or cisplatin alone at 24 h after treatment. This 
was confirmed in several other studies [80,81]. These apoptotic effects 
observed by Bergs et al. [14] correlated with clonogenic survival. Fujita 
et al. [82] also observed an inhibitory effect of the combination of 
cisplatin and radiation on the survival of lung tumor cells and ascribed 
this effect on the induction of tumor cell apoptosis. 

In conclusion, a radiosensitizing effect of cisplatin on cell survival 
is observed in confluent cultures when cells were replated after a 24 
hour incubation period during which PLD repair could take place. In 
contrast, cisplatin did not induce a significant radiosensitization after 
immediate plating. 

Several studies have shown that gemcitabine is a potent sensitizer 
of ionizing radiation [29,34,83]. Among other proposed mechanisms 
of action, the effect of gemcitabine on cell cycle distributions may be 
the most important [35,36]. In our studies, both gemcitabine-sensitive 
cell lines SWp and A2780 could be sensitized to irradiation when 
cytotoxic gemcitabine-treatments were given. The radiosensitization 
was accompanied by a clear arrest of cells in early S phase which has 
been argued to be vital for gemcitabine-induced radiosensitization 
[33]. Both cell lines showed an increase in α-value indicating the 
efficacy of gemcitabine-induced radiosensitization in the clinically 
relevant dose range. Although the gemcitabine resistant cells still could 
be sensitized only much higher gemcitabine doses were necessary to 
reach an effect. In the resistant ovarian carcinoma cell line AG6000 
this was demonstrated by an increase in the value of α. In contrast 
with this change, in the gemcitabine resistant lung tumour cell line 
an increase in the β-value was obtained, the α-value was not affected. 
In both gemcitabine-resistant cell lines the sensitivity to ionizing 
radiation alone was not altered. It is reported that gemcitabine resistant 
tumours are cross-resistant to related drugs like Ara-c [84,85]. In both 
gemcitabine-resistant cell line, AG6000 and SWg, this was indeed 
the case [40]. Moreover, the AG6000 cells were also more resistant to 
cisplatin and taxoids (41). However, no altered sensitivity was found 

 

SW-1573

0 2 4 6 8
10 -4

10 -3

10 -2

10 -1

10 0

control dp
41°C dp

control ip
41°C ip

Radiation dose, Gy

Su
rv

iv
in

g 
fr

ac
tio

n

SW-1573

0 2 4 6 8
10 -4

10 -3

10 -2

10 -1

10 0

control dp

control ip
43°C ip

43°C dp

Radiation dose, Gy

Su
rv

iv
in

g 
fr

ac
tio

n

Figure 5: Radiation survival curves of confluent cultures of SW-1573 cells (human lung tumour cells) plated immediately after irradiation (ip) or 24h after irradiation ( 
dp) with or without hyperthermia pre-treatment at 41ºC (left) or at 43ºC (right) for 1h. Means with standard errors of at least three experiments are shown.
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in SWg cells for cDDP, paclitaxel, MTX and 5 FU, while AG6000 cells 
were 2.5-fold more sensitive to MTX [41]. These findings indicate that 
patients previously treated with gemcitabine may receive additional 
radiotherapy with or without cDDP or paclitaxel. 

The HP-induced-radiosensitisation is mainly due to an increase 
in the linear parameter α. The quadratic parameter, β, is only rarely 
influenced. Different mechanisms involved in the radiosensitisation 
induced by halogenated pyrimidines have been described [43]. Wang 
et al. [86] suggested that in exponentially growing cells increased DNA 
damage production was the major component of radiosensitisation 
while in plateau-phase cells radiosensitisation occurred through 
inhibited repair and/or enhanced fixation of potentially lethal damage. 
The increase of the α values for exponentially growing cells as found in 
our study, indicates an increase in the number of directly lethal events 
due to the HPs. This is in agreement with observations of Webb et al. 
[52] and Jones et al. [87] which suggest that an important mechanism 
of radiosensitisation involves an increase of effective DNA double 
strand breaks. Miller et al. [50,51] have suggested that radiation-
induced damage in cells which have HPs incorporated into the DNA 
after low-LET irradiation resembles the damage produced by high-LET 
radiation. In plateau-phase cells plated immediately after irradiation 
the increase of α might be due to the same mechanism as involved in 
exponentially growing cells. In these cells also an increase of β was 
observed indicating that accumulation of sublethal lesions contributed 
significantly [2]. Due to the immediate plating after irradiation this 
sublethal damage might be fixated.  Greatest increases in α were found 
in delayed plated plateau-phase cells. This radiosensitisation can be 
interpreted as an enhanced fixation of potentially lethal damage due 
to immediate DNA damage and/or to damaged DNA repair function 
in these cells expressed during the interval before delayed plating. 
The value of β in these cells returned to values as found in cells not 
containing HPs. This demonstrates that sublethal damage has been 
repaired in HP-containing plateau-phase cells.

Hyperthermia is an excellent radiosensitizer which can already be 
effective at mild temperatures. One hour hyperthermia treatment at 
41ºC without radiation had only a small cytotoxic effect in both the 
heat sensitive and the heat resistant cell line. This is in agreement with 
the general idea of cell kill induction at temperatures ≥42ºC for 1h or 
more Dewhirst, 2005 [64]). Hyperthermia treatment at 43ºC for 1h 
did not have a large cytotoxic effect in heat resistant SW-1573 cells. 
Radiosensitization by 41°C temperature hyperthermia was observed in 
RKO, but not in SW-1573 cells. The ability of mild temperatures (in the 
range of 40-42°C) hyperthermia to increase radiosensitivity of human 
tumor cells has been shown to be cell line dependent [66,67,88-93]. In 
a study by Xu et al. [94] 41.1°C pre-treatment of cells for 1h did not 
induce radiosensitization whereas treatment for 2h or more resulted 
in radiosensitization, in the hyperthermia resistant, but not in the 
hyperthermia sensitive cell line [94]. However, simultaneous treatment 
of the sensitive cell line with 1h 41.1°C hyperthermia and radiation 
did increase cellular radiosensitivity [95]. An important mechanism 
of mild hyperthermia induced radiosensitization in vivo is the 
reoxygenation of tumors by an increase in blood flow [96-98]. Recently 
it was demonstrated that the BRCA-2 protein is transiently inhibited 
by mild hyperthermia [68,99]. Also translocation of the Mre11 DSB 
repair protein from the nucleus to the cytoplasm has been implicated 
[95,100]. However, disappearance of Mre11 protein foci at the sites of 
irradiation induced DNA double strand breaks by 41ºC pre-incubation 
of cells was not observed [66-68]. A role for mitotic catastrophe 
occurring as a result of G2/M checkpoint abrogation has also been 
suggested [101]. It has been shown that radiosensitization by 41-43°C 

hyperthermia correlates with an increased number of chromosomal 
fragments, but not of color junctions, at 24h after treatment compared 
to radiation alone [67]. 
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