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Introduction 
The high toxicity of excessive metals has been known for a long time. 

The exposure of plants to metal ions causes growth inhibition or death 
of plants, coincidental with the alteration of membrane permeability 
of cells leading to the leakage of ions and pigment destruction [1]. 
However, the fundamental mechanism of metal phytotoxicity has 
not yet been characterized, and little is known about the mechanisms 
related to absorption and phytotoxicity of cadmium (Cd). Active 
oxygen species (AOS) such as O2, O2

−, OH and H2O2 are commonly 
generated under stress conditions [2] and are strong oxidizing species 
that can rapidly attack all types of biomolecules [3], thus disrupting 
the normal metabolism of the cell. Meanwhile, generation of AOS, 
particularly H2O2 has been proposed as part of the signaling cascade 
leading to protection from stresses [4]. For the protection from the 
oxidative stress, plant cells contain both oxygen radical detoxifying 
(antioxidant) enzymes such as catalase (CAT), peroxidase (GPX) and 
superoxide dismutase (SOD), and non-enzymatic antioxidants such as 
ascorbate, glutathione and α-tocopherol [4]. SOD, the first enzyme in 
the detoxifying process, catalyzes the dismutation of O2

− to H2O2 and O2 
[5], CAT mediates the cleavage of H2O2 evolving O2, and GPX reduces 
H2O2 to H2O using several reductants available to the cells [5]. Altered 
activities of these antioxidant enzymes and antioxidants commonly 
have been reported in plants, and are used frequently as indicators 
of stress [6]. In parallel to metal-induced tissue damage or cell death, 
alteration of both antioxidant enzyme activities [7] and antioxidant 
levels [5] as well as enhancement of both lipid peroxidation and 
phytochelatin synthesis [5] have been observed. Therefore, the metal-
induced phytotoxicity may be mediated by oxidative stress. However, 
the changes in AOS metabolism and the enzymes activities involved in 
scavenging AOS in response of exposing plants to metal have not been 
investigated in detail. In animals, HgCl2 enhanced lipid peroxidation 
in several organs, as measured by the thiobarbituric acid reaction for 
malondialdehyde (MDA), and reduced glutathione level [8], indicating 
that the oxidative stress-induced lipid peroxidation. The objective 
of present study is to investigate whether Cd-induced phytotoxicity 
expressed as growth inhibition and chlorophyll destruction in tomato 
seedlings is mediated by oxidative stress. The data shows that tomato 
seedlings exposed to toxic dose of cadmium produce H2O2 and the 
activities of related antioxidant enzymes are altered, indicating that 
Cd-induced phytotoxicity can be mediated by oxidative stress. 

Materials and Methods
Plant material

Seeds of the tomato (Solanum lycopersicon. Mill cv 63/5F1) were 
sterilized in 10 % (v/v) hydrogen peroxide for 20 minutes, and washed 
abundantly in distilled water afterwards. After imbibition, the seeds 
were germinated on moistened filter paper at 25οC in the dark. After 7 
days, uniform seedlings were transferred to 6 litres plastic beakers filled 
with continuously aerated, basal nutrient solutions of an initial pH 5.8-
6. Plants were grown in a growth chamber. At the age of 10 days after
transplant, cadmium was added to the medium as CdCl

2
 at 0 to 50 µM.

After one week of Cd treatment, plants were separated into shoots and
roots. Roots were rapidly washed three times with distilled water, and
then samples were stored in liquid nitrogen for subsequent analysis or
dried at 70οC for at least three days in order to determine both dry
material and ionic contents.

Cadmium accumulation

Total shoot and root accumulation of Cd in Solanum were 
determined after 7 days of treatment. Roots and shoots were harvested, 
washed in deionized water for 2 min, air dried at 80 8C for 2 days, 
and then ground into a fine powder using a pestle and mortar. The 
metal concentration in samples was analyzed by atomic absorption 
spectrophotometry (Philips PYE Unicam PU 9000).

Chlorophyll, pheophytin and malondialdehyde contents

Shoot collected at day 7 after Cd treatment were weighed and 
ground in 80% acetone. The chlorophyll and pheophytin contents of 
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grinding fresh leaf tissue in 10% trichloroacetic acid [15]. The assay is 
based on the reduction of Fe3+ to Fe2+ by ascorbic acid and formation of 
a pink colour complex between Fe2+ and α α -bipyridyl, with absorption 
max at 525 nm.

Statistical analysis

The results are the means ± S.E. of at least three independent 
replicates. The analyses of variance were computed on statistically 
significant differences determined based on the appropriate F-tests. 
The mean differences were compared utilizing Duncan’s multiple 
range test.

Results
Cd accumulation, seedling growth, pheophytin and 
chlorophyll levels

The content of Cd in tissues of tomato seedlings increased 
concurrently with increase in external Cd concentration and exposure 
time (Figure 1A) (P < 0.05). Cd was more accumulated in roots than in 
upper plant parts; Cd content in roots at 17 days was about 8-fold higher 
than that in shoots. The effects of Cd on seedling growth, expressed 
as dry weight and length of shoots and roots, are shown in Figure 
1B and Figure 1C, respectively. Cd-exposure induced a substantial 
depression of both root and shoot dry weights, and this effect varied as 
a concentration of the exogenous Cd (P < 0.05). The growth reduction 
observed at the high doses of Cd appeared to coincide with an increased 
accumulation of this metal. However, 10 μM Cd treatments for 17 
days was enough to suppress length of shoots and roots, but, the foliar 
surface was more sensitive at Cd stress than the length. The effects 
of Cd on chlorophyll a, b, total and pheophytin levels are shown in 

supernatant were estimated according to Arnon [9]. The level of lipid 
peroxides in the leaves and roots was determined as malondialdehyde 
(MDA) content by the thiobarbituric acid (TBA) reaction as described 
by Dhindsa et al. [10].

Measurement of H2O2

Content of H2O2 in plant tissues was determined based on 
the modified method of Patterson et al. [11]. H2O2 contents were 
determined by colorimetric method from A508, using H2O2 (30% Sigma) 
(5-50 μM) as a standard.

Enzyme antioxidant assays 
All samples were prepared for enzyme analyses by homogenization 

of the fresh tissue material with a mortar and pestle and a small 
amount of sand in a solution buffer. The supernatant was used for 
immediate determination of enzyme activities. All spectrophotometric 
analyses were conducted on Uvikon 922 spectrophotometer (Kontron 
Instruments, Italy). Activity of CAT was determined by monitoring 
the disappearance of H2O2 by measuring the decrease in absorbance at 
240 nm of a reaction mixture containing 2 ml 29.8 mM H2O2 in KPO4 
buffer (pH 7.0) and 1 ml extract [12]. Activity of SOD was assayed by 
the inhibition of the photochemical reduction of nitroblue tetrazolium 
(NBT) according to the modified method of Becana et al. [13]. Activity 
of guaiacol peroxidase (GPX) was measured by monitoring the H2O2

−-
dependent oxidation of reduced guaiacol at 470 nm [14]. One unit was 
defined as the enzymic amount which oxidizes 1 μM guaiacol min−1. 
Total activities (U) of enzymes were expressed on a fresh weight basis.

Ascorbate 

Ascorbate (ASC) and total ascorbate (ASCT) were extracted by 
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Figure 1: Cadmium accumulation on shoot (S) and root (R) (A). Effect of cadmium stress on shoot and root dry weight (B), on shoot and root length and surface 
(C) and on chlorophyll a, chlorophyll b,chlorophyll total and pheopphytin content (D) of Solanum plants. The plants were grown in presence of 0-50 µM CdCl2 in the 
medium culture during 17 days. Values are the means ± SE of triplicates from five independent experiments.
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Figure 1D. With a substantial amount of Cd accumulation (Figure 1A), 
Cd-exposure for 7 days was enough to decrease chlorophyll content 
particularly the chlorophyll b and total. However, cholohyll a and 
pheophytin were more resistant.

H2O2 production and lipid peroxidation (MDA) 

H2O2 content in roots was much higher than in shoots (Figure 2A). 
Subjecting tomato seedlings to up to 50 μM Cd for 17 days increased 
the level of endogenous H2O2 in comparison with control plants, and 
the effect of Cd on the H2O2 level measured at day-17 was much higher 
in shoots than in roots. The increase of H2O2 level in shoots was 9 
fold than in roots. To know whether lipid peroxidation was involved 
in the reduction of both seedling growth levels with Cd treatments, 
MDA formation was investigated (Figure 2B) (P < 0.05). A consistent 
increase in MDA level paralleled to the H2O2 level observed at day-17.

Antioxidant enzymes

The activities of SOD, CAT and GPX were investigated to 
determine whether Cd-exposure influenced these antioxidant enzymes 
(Figure 3). All enzyme activities, estimated on a fresh weight basis, were 
substantially increased by Hg-exposure, depending on exposure time 
and treatment levels. Compared to the controls, the activity of SOD 
markedly increased in both leaves and roots exposed to Cd (Figure 3A) 
(P < 0.05). Seven-day exposure to 10 μM Cd was enough to increase the 
activity, and the increased SOD activities paralleled the levels of H2O2 
formed in shoots and roots (Figure 3). Examination of two enzymes, 

which decompose the H2O2 generated by SOD, indicated that the 
activities of CAT and GPX also increased in response to Cd exposure. 
The CAT activity (Figure 3B) in the roots was not changed with 5 μM 
Cd but increased with 10 μM Cd compared to the controls. Meanwhile, 
when subjected to Cd stress for up to 50 µM, roots maintained higher 
levels of activity compared to the controls (P < 0.05). The levels of H2O2 
formed in response to Cd-exposure (Figure 2A) might be comparable 
to the activities of CAT particularly at the highest dose of Cd. The 
unexpected low H2O2 levels especially in the shoots measured at day-
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Figure 2: Effect of cadmium stress on shoot (S) and root (R) H2O2 content 
(A), on shoot and root malanoaldehyde (MDA) content (B) of Solanum 
plants. The plants were grown in presence of 0-50 µM CdCl2 in medium 
culture during 17 days. Values are the means ± SE of triplicates from five 
independent experiments.
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Figure 3: Effect of cadmium stress on shoot (S) and root (R) superoxide 
dismutase activity (SOD) (A), on shoot and root catalase acyivity (CAT) 
(B) and on shoot and root guaicol peroxidase activity (GPX) of Solanum 
lycopersicum plants. The plants were grown in presence of 0-50 µM of 
CdCl2 in the culture medium during 17 days. Values are the means ± SE of 
triplicates from five independent experiments.
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[22]. Some protective enzymes are activated in plants when production 
of oxygen free radicals is stimulated by stresses, and increased SOD 
activity may be considered as circumstantial evidence for enhanced 
production of AOS [23]. The enhanced SOD activity observed in this 
study (Figure 3A) might support the hypothesis that the H2O2 resulted 
from oxygen free radicals including O2

−. The increased CAT activity 
(Figure 3B) might be related to the lowered H2O2 production observed 
in figure 2, and indicated that the role of CAT might be critical to 
removal of H2O2 induced by Cd. Although Cd inhibits CAT activity, 
the enzyme can take part in an efficient defence mechanism against 
Cd-induced oxidative stress in tomato bean. Because of a significant 
increase in GPX activity and strong qualitative metal-specific changes 
in the GPX isozyme pattern, the role of GPX in removal of H2O2 might 
be critical in metal-induced oxidative stress. The activity of GPX was 
not highly changed in the shoots, but was lowly increased in 50 µM 
of Cd. It might be possible that Cd-induced GPX activity is associated 
with cell wall lignification and, consequently, with a decrease of root 
growth (Figure 1B). GPX has been postulated to stiffen the cell wall 
and GPX-mediated lignification decreases the cell wall plasticity, and 
therefore reduces cell elongation, which might represent a mechanical 
adaptation to stress conditions [24]. Based on the present work, it can 
be concluded that the amount of Cd in the tissues of tomato seedlings 
might be associated with the reduction of both biomass and chlorophyll. 
Toxic concentrations of Cd cause oxidative stress, as evidenced by the 

17 with an increased SOD activity might be due to the increased CAT 
activity. Mean GPX (Figure 3C) activity was higher in roots than in 
leaves. In shoots, treatment with 50 μM Cd for 17 days resulted in a 
marked increase in GPX activity (P < 0.05). In roots, the results also 
indicated that the lowered GPX activity measured was recovered at 50 
µM, and the enhanced GPX activity might contribute to the reduction 
of H2O2 level measured in shoots and roots.

Ascorbate and total ascorbate

Changes in ascorbate and total ascorbate content were more 
important in roots than in shoots (Figure 4A and B). ASC and ASCT 
concentrations showed a significant increase (P < 0.05). The effect of 
excess Cd was particularly marked in shoots than in roots of tomato 
plants.

Discussion 
Although a number of studies have demonstrated that metals 

are generally immobilized to a far greater extent at the site of metal 
uptake [16], details have not been provided with respect to time 
and concentration in specific tissues to allow for distribution in the 
growing plant. Since translocation will require the movement of Cd 
across the endodermis, membrane integrity to allow the symplastic 
movement might be important for the continuous Cd accumulation 
in shoots. High Cd accumulation in roots (Figure 1A) in spite of high 
MDA production (Figure 2B) indicates the extent of cell damage 
which might be explained on this basis. The lowest accumulation 
in the shoots also implies that absorbed Cd is not readily mobilized 
and redistributed in the plants. The observed changes in the biomass 
of tomato seedlings were consistent with previous results obtained at 
high Cd in pea [17] and tobacco [18]. T﻿he growth reduction observed 
at the levels of Cd in treatments (Figure 1) closely coincided with a 
considerable accumulation of this metal, especially in the roots. The 
growth reduction might be due to both the reduction in chlorophyll 
contents in leaves (Figure 1D) and membrane damage indicated as an 
enhanced lipid peroxidation resulted by MDA accumulation (Figure 
2B). It has also been suggested that heavy metals induce the deficiency 
in nutrients by reducing the uptake and transport of some mineral 
nutrients since metal accumulation in root may block the entry or 
binding of the ions such as Ca, Mg and K to ion-carriers [19]. The 
reduction of chlorophyll content observed in this study might be due 
to an increased cell or tissue damage estimated by MDA production. 
Destruction of lipid components of membrane by lipid peroxidation 
causes membrane impairment and leakage. Meanwhile, it has also been 
suggested that the reduction in chlorophyll content in the presence of 
metal is caused by an inhibition of chlorophyll biosynthesis [20]. The 
present study clearly indicates that Cd-exposure results in an increase 
in H2O2 content in plants (Figure 2A). Although the mechanism of 
Cd-induced H2O2 formation is not presently known, heavy metals 
are known to be involved in many ways in production of AOS [21]. 
The H2O2 accumulation after Cd-exposure may be produced in a 
manner similar to H2O2 in plants cold-stressed. It is conceivable that 
a decrease of enzymic and non-enzymic free radical scavengers caused 
by heavy metals may also contribute to the shift in the balance of free 
radical metabolism towards H2O2 accumulation, and H2O2 and O2

− 
may interact in the presence of certain metal ions or metal chelates 
to produce the highly reactive hydroxyl radical (OH). The increased 
H2O2 and OH production might be involved in the lipid peroxidation 
observed in tomato seedlings. The susceptibility to oxidative stress is a 
function of the overall balance between the factors that increase oxidant 
generation and those substances that exhibit antioxidant capability 
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increased H2O2 formation and lipid peroxidation in shoots and roots of 
seedlings. The reduction of both biomass and chlorophyll concentration 
might result from lipid peroxidation-mediated cell damage in tissues. 
Cd-induced H2O2 formation may be associated with an increased 
activity of SOD for O2

− conversion. Although parallel increases in 
activities of CAT and GPX occur and might contribute to lower H2O2 
content, the antioxidant potential in the tissues of seedlings might 
not be enough to block the lipid peroxidation process. The high GPX 
activity might contribute to suppress elongation of both shoots and 
roots. Summing up, it was proposed that the reduced growth of tomato 
seedlings exposed to toxic levels of Cd may be induced by an enhanced 
production of toxic oxygen species and subsequent lipid peroxidation 
(Figure 5). The present results of ascorbate and total ascorbate contents 
emphasize its roles in plant stress tolerance (Figure 4). Ascorbate is also 
considered crucial in scavenging AOS, particularly those arising from 
exposure to heavy metal pollutants such as cadmium. Summarising our 
results it can be concluded that the heavy metal stress caused typical 
biochemical changes in wheat seedlings concerning contents of AOS, 
ascorbate and antioxidant enzymes. The differences between the two 
organs are due to the different transport processes and their different 
biological pathway. Ascorbate synthesis seemed to reduce the negative 
effects of cadmium toxicity in tomato seedlings. Further research is 
needed to find out the relationship between the cadmium stress and 
these biochemical changes in tomato seedlings and also to prove the 
beneficial role of ascorbate. Although the antioxidant role of ascorbic 
acid is fundamental, this vitamin can be involved in other chemical 
reactions of cellular metabolism. The effect of ascorbate on the cell may 
be either protective or toxic. 

Our results indicate that GPX is the highly sensitive site of 
antioxidant enzymes under Cd stress. The rapid activation of GPX 
under Cd stress is mainly due to the increase of ASC concentration 
at the site where GPXs are compartmentalized, which makes the 
antioxidant efficiency not sufficient to scavenge ROS, resulting in the 
accumulation of ROS-like H2O2. H2O2  is active to interact with thiol 
groups in proteins, especially to that in Rubisco protein and oxidized 
them. These results may contribute to clarifying the mechanism of 

oxidative stress and its physiological consequence under Cd stress, and 
help to find ways to enhance plant resistance to Cd stress.
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