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Introduction
More than three decades ago for the born of the theory of limit states 

and the model of concrete being modeled by a rectangle in all of the 
design codes of the world. This model in fact, represent a simplification 
of a real model of concrete all the world knows its allure and curve [1]. 
This simplification give, as we know a good results and in general in 
the sense of the security and safety for the users of reinforced concrete 
constructions; but in all cases, where the simplification adopted present 
advantages or inconveniences, not present a real model of concrete 
which represent a reality of the behavior of concrete under compression 
[2]. All the references indicated below; present a method of the 
resistance ultimate limit state for that the behavior of concrete at this 
case was modeled by a rectangle or a parabola-rectangle. The proposed 
model of concrete being with good agreement with the experimental 
results, made to determine the envelopes of concrete in compression, 
and we adopt the same limits of the contraction of concrete and of the 
dilatation of steel bars adopted by the design codes [3]. The integration 
of the function present the envelope of the concrete model is difficult; 
but we proposed a good agreement function which holds well with 
the numerical integration results [4]. After that, we developed the 
expressions of a reduce moment, the depth of contraction concrete, 
the dilation of steel bars, and finally, the sections of the tension and 
compression bars which present in tables for simplicity use by the 
designers or the engineers [5]. All these expressions indicated are 
compared with the expressions of the British BS code and the French 
BAEL code. The results of the comparison, shows that the proposed 
model is more resistant to contraction and by conclusion is more 
economic than the indicated codes, which in fact present that for the 
greet projects and for the more greet bending moments [6,7].

The Proposed Concrete Model
The proposed model for concrete function of the fraction χ=(εc/εcc) 

is expressed as follows:
3 4

((7 tanh(1.1 )) / (4.598 )) 0.00098c

cc

f
f

χ χ χ= + −               (2.1)

Function for that the fraction (fc/fcc) represents the variable strength 
of concrete to the characteristic strength of concrete for εcc=0.002 or for 
χ= 1. The proposed model is being shown in figure 1.1.

In fact that the function proposed for the model of concrete has no 
primitive and we cannot determine theoretically its center of gravity 
reported to the top of the beam which we have to design; but we 

*Corresponding author: Tahar Latrache, Doctorate Student in Civil Engineering, 
B.P. 129 Salem Lalmi, 40003 Khenchela, Constantine University, Algeria, Tel: 
(00213)778936882; E-mail: latrache.tahar@yahoo.ca

Received April 03, 2012; Published May 31, 2013

Citation: Latrache T (2013) A Concrete Design Model for Members Subjected to 
Bending Moments. 2: 698 doi:10.4172/scientificreports.698

Copyright: © 2013 Latrache T. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Several designers know that there’s been a lack in the modeling of concrete by a rectangle or a parabola-

rectangle by the using actual codes for the dimensionality of RC members at ultimate limit state. In this approach we 
present an accurate model of concrete which holds well with the experimental results, and we develop the formulas 
for the dimensionality of RC members subjected to a bending moment. The results were compared with results of 
the British BS and the French BAEL codes. The comparison shows that the proposed model is more economic and 
present minus shrinking of concrete and more stretching than the uneconomic limit in the steel bars than the tow 
largely used codes indicated.

A Concrete Design Model for Members Subjected to Bending Moments
Tahar Latrache*
Doctorate Student in Civil Engineering, B.P. 129 Salem Lalmi, 40003 Khenchela, Constantine University, Algeria

searched tow functions which holds well with the numerical data of 
the surface between the curve of this function and the χ axis, and the 
center of gravity of the surface of the function. These tow functions are 
expressed respectively as follows and represented with the numerical 
data in figure 1.2.

γ1(εc)=((3(500εc)
1.025/(3.5+1.075(500εc)2.178))-0.0001(500εc)0.5   

                  (2.2)

γ2(εc)=(1/3)+(0.05533((500εc)
1.3)(tanh(500εc+0.001))1.8)            (2.3)

The Expressions Formulae the Present Model
In the ultimate limit state of resistance for members subjected to 

bending moment only, one have to talk about the diagram of tow pivots. 
The Pivot A, which represent the maximal dilatation of the bottom steel 
bars (εs=0‰) and which pivots from εc=0‰ to εc=3.5‰. The Pivot B, 
which represent the maximal contraction of concrete for the top of 
the bending beam (εc=3.5‰), and pivots around this point to make 

Figure 1.1: The proposed model for concrete compared with the experimental 
results.
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the dilatation, of the bottom steel bars, decrease from their maximal 
dilatation to εc=fe/Es which equals for fe=400MPa and Es=200000MPa, 
εe=2‰. For values of εs<εe, we have to take compression steel bars 
to reinforce the dilative steel bars at the bottom for not exceed this 
minimum value, because if not, the dilative steel bars not exceed their 
limit state, and their section becoming not economic (Figure 2.1).

Pivot A 

The bending moment in this case is small, and its expression is:

M=σccbxγ1(εc)(d-γ2(εc)x)                (3.1)

Expression with σcc=fcc/γc and x, represent the depth of the 
compression region of the concrete. Suppose that x=αd, such that d is 
the utile depth, the last expression becomes:

M=σccbd2γ1(εc)α(1-γ2(εc)α)  (3.2)

Define that the reduce moment as:

µ=M/σccbd2=γ1(εc)α(1-γ2(εc)α)              (3.3)

We know that,

α = εc/(εc+10‰)                (3.4)

Replace α by its expression (Eqn. 3.4) and γ1 and γ2 from Eqn. 2.2 
and Eqn. 2.3 respectively, in the expression of µ (Eqn. 3.3), we may 
find an expression of only εc. We know the value of µ such we know 
the dimensions of the section of the beam, the maximal strength of 
the concrete and the exterior bending moment. Then we have to solve 
the equation (3.3) for εc. The expression is more complicated to solve 
theatrically; but with a chart or a table we can solve it numerically. The 
maximal value of µ which agreed with εc = 3.5‰ is µ = 0.1715; but for 
the BS code is 0.138 and for the BAEL is 0.158, which concludes that 

the model proposed make the concrete resist good to the contraction 
due to same bending moment than the tow indicate codes, except 
that for a very low bending moments. The curve of µ vs. εc is being 
shown by the figure 2.2 and the variations by the table 1 for the reason 
of the designing use. The section of the dilated steel bars is as known 
expressed as:

Ast=M/zσe                (3.5)

Expression such that σe=fe/γs and, z = d(1-γ2(εc)α(εc))   
                  (3.6)

We can define ρ(εc) as:

ρ(εc)=Astσ/bdσcc=M/bd2σcc(1-γ2(εc)α(εc))

Then we can express it as:

ρ(εc)=γ1(εc)α(εc)                 (3.7)

This last expression is being shown by the figure 2.3 and the 
variations of ρ function of εc are numerically listed in table 1.

We can then calculate µ firstly, as we know the values of b, d, M and 
σcc and we compare it with 0.1715. If µ ≤ 0.1715 then the diagram pivots 
around A and εc ≤ 0.0035, and then we can determine (εc) from table 1 
using linear interpolation, and then we can compute Ast. The function 
of linear interpolation, such that µ falls between tow values, and then ρ, 
µmin ≤ µ ≤ µmax and then ρmin ≤ ρ ≤ ρmax, is expressing as:

ρ=ρmin+((µ-µmin)(ρmax-ρmin)/(µmax-µmin))               (3.8)

Figure 1.2: γ1 and  γ2 function of εc.

Figure 2.1: The pivots A and B diagram.

Figure 2.2: The variations of µ vs.  εc (Pivot A) in comparison with the BS 
and BAEL.

Figure 2.3: The variations of ρ vs.  εc (Pivot A) in comparison with the codes.

http://dx.doi.org/10.4172/scientificreports698


Citation: Latrache T (2013) A Concrete Design Model for Members Subjected to Bending Moments. 2: 698 doi:10.4172/scientificreports.698

Page 3 of 4

Volume 2 • Issue 3 • 2013

And then we can compute the section of the tensile steel bars using 
the expression:

Ast=ρbdσcc/σe                      (3.9)

For µ=0.138, which is the value correspond to εc=0.0035 as 
indicated by the BS and suppose that the width of the beam is b, we 
have to reduce this width by a factor of 14.5%b to exceed εc=0.0035 
according to BAEL, and 24.3%b according to the present model. The 
section of tensile steel bars are reduced too, by this factors reported to 
the section computed by the BS.

Pivot B 

In this section we talk about the maximal shrinking of the concrete 
(i.e., when εc=3.5‰ and µ>0.1715) and the steel dilatation pivots from 
10‰ to fe/Es (for the FeE400, fe/Es=2‰). The bending reduces moment 
is expressed as:

µ=M/σccbd2=γ1(3.5‰)α(1-γ2(3.5‰)α)               (3.10)

Where α now is a function of the steel bars dilatation εst:

α(εst)= 3.5‰/(3.5‰+ εst)               (3.11)

γ13.5‰=0.7458

γ23.5‰=0.4361

Then the expression of µ (Eqn. 3.10) becomes:

µ=0.7458(3.5‰/(3.5‰+εst))(1-0.4361(3.5‰/(3.5‰+εst)))      (3.12)

We know the value of µ, then we can solve the equation (3.12) to 
find εst as expressed:

εst=3.5‰[0.7458-2µ + ((2µ - 0.7458)2 + 4µ(0.42055662 - µ))1/2]/2µ 
                    (3.13)

The variations µ of function of εst are shown in figure 2.4 in 
comparison with the indicated codes and listed in table 2. We have to 
compare before all the value of µ with the value:

µe = 0.7458(3.5‰/(3.5‰+εe))(1-0.4361(3.5‰/(3.5‰+εe)))    (3.14)

Such that εe=fe/Es for FeE400, εe=2‰, and the value µe to compare 
with is 0.343).

• If µ ≤ µe, then: 

ρ(εst)=γ1(3.5‰)α(εst)=Astσe/bdσcc=0.7458(3.5‰/(3.5‰+εst))                  
(3.15)

The variations of (εst) are shown in figures 2.5, 2.6 and table 2 using 
the interpolation formula of equation 3.8. We know ρ, then we can 
compute the tensile steel bars:

Ast=ρbdσcc              (3.16)

• If µ > µe then, σ < σe, 

and with consequence, the tensile steel bars are not economic. We have 
in this case reinforced the compression concrete by compression steel 
bars [8,9]. The compression steel bars have to resist to the difference 
between M and Me=µebd2σcc, then the compression steel bars are 
computed as:

A’s=(µ-µe)bd2σcc/(d-d’)σe                             (3.17)

µ εst ρ µ εst ρ µ εst ρ 
0,3429 0,0020 0,4746 0,2567 0,0048 0,3145 0,2028 0,0076 0,2352 
0,3353 0,0022 0,4579 0,2519 0,0050 0,3071 0,1998 0,0078 0,2310 
0,3280 0,0024 0,4424 0,2474 0,0052 0,3000 0,1969 0,0080 0,2270 
0,3208 0,0026 0,4279 0,2430 0,0054 0,2933 0,1940 0,0082 0,2231 
0,3139 0,0028 0,4143 0,2387 0,0056 0,2868 0,1912 0,0084 0,2194 
0,3073 0,0030 0,4016 0,2346 0,0058 0,2807 0,1885 0,0086 0,2157 
0,3008 0,0032 0,3896 0,2306 0,0060 0,2748 0,1859 0,0088 0,2122 
0,2946 0,0034 0,3783 0,2268 0,0062 0,2691 0,1833 0,0090 0,2088 
0,2886 0,0036 0,3676 0,2230 0,0064 0,2637 0,1808 0,0092 0,2055 
0,2828 0,0038 0,3576 0,2194 0,0066 0,2584 0,1784 0,0094 0,2023 
0,2772 0,0040 0,3480 0,2159 0,0068 0,2534 0,1760 0,0096 0,1993 
0,2718 0,0042 0,3390 0,2125 0,0070 0,2486 0,1737 0,0098 0,1963 
0,2666 0,0044 0,3304 0,2092 0,0072 0,2440 0,1715 0,0100 0,1934 
0,2615 0,0046 0,3223 0,2059 0,0074 0,2395 

Table 2: Variations of εst and ρ function of µ (Pivot B).

µ εc ρ µ εc ρ µ εc ρ 
0,0004 0,0001 0,0004 0,0544 0,0013 0,0566 0,1325 0,0025 0,1437 
0,0016 0,0002 0,0016 0,0613 0,0014 0,0640 0,1377 0,0026 0,1499 
0,0035 0,0003 0,0036 0,0682 0,0015 0,0715 0,1426 0,0027 0,1558 
0,0062 0,0004 0,0063 0,0752 0,0016 0,0791 0,1473 0,0028 0,1615 
0,0096 0,0005 0,0097 0,0822 0,0017 0,0867 0,1516 0,0029 0,1669 
0,0136 0,0006 0,0138 0,0891 0,0018 0,0943 0,1556 0,0030 0,1720 
0,0181 0,0007 0,0185 0,0959 0,0019 0,1018 0,1594 0,0031 0,1768 
0,0232 0,0008 0,0238 0,1026 0,0020 0,1093 0,1628 0,0032 0,1813 
0,0288 0,0009 0,0296 0,1090 0,0021 0,1166 0,1660 0,0033 0,1856 
0,0347 0,0010 0,0359 0,1153 0,0022 0,1237 0,1689 0,0034 0,1896 
0,0410 0,0011 0,0425 0,1213 0,0023 0,1306 0,1715 0,0035 0,1934 
0,0476 0,0012 0,0494 0,1271 0,0024 0,1373 

Table 1: Variations of εc and ρ function of µ (Pivot A).
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Such that α(εe)=3.5‰/(3.5‰+εe).

As a comparison between the values of µe given by the present 
model and the BS and the BAEL codes, for this model µe=0.343, for 
the BS 0.2738 and for the BAEL 0.3226 (for FeE400). We can observe 
that the present model is more resistant alone to compression than 
the indicated codes. For the same characteristics of concrete and steel, 
we suppose that µ=0.343; according to the present, the section needs 
only tensile steel bars computed by the following formula As=µe(bd2σcc/
(1-0.4361α(εe))σe) but according to BS, A’s=0.0692bd2σcc/(d-d’)σe and 
according to BAEL, A’s=0.0204bd2σcc/(d-d’)σe and we have to add these 
sections to the tensile steel bars.

Conclusion 
For the same bending moment, the present model is economic than 

the British BS and the French BAEL codes; but the good news is that this 
model is more resistant to shrinking and to compression alone which 
make it economic in concrete section as well as in steel. For the Pivot A, 
we see its real curve which different to the simplifications of a rectangle 
or parabola-rectangle adopted by the different codes. Its behavior is 
a real behavior of concrete to compression, experienced throughout 
the entire world. Its increase phase (hardening) of resistance function 
of the contraction is more applicable with the experiments than the 
model of a parabola; and its decrease phase (softening) too is adopted 
under different experiments, which make it in the sense of security. 
As a future work with this model, we try to develop it for the section 
subjected to a bending moment and a concentrated force, such the case 
of course of the columns. Moreover, the model is very simple to use 
by the engineer or a reinforced concrete designer, we can compute the 
sections of steel bars by a one step, using the tables proposed [10-12]. 

References

1. Betonvereniging: The Concrete Society and Deutscher Benton-Verein DB 
(2005) Design of Concrete Structures: Design Aids for Eurocode 2., E & FN 
Spon, UK.

2. Bond AJ, Brooker O, Harris AJ, Harrison T, Moss RM, et al. (2006) How to 
design concrete structures using Eurocode 2. The concrete centre, A Cement 
and Concrete Industry publication, UK.

3. Chana P (2005) Eurocode 2 worked examples. European concrete Platform 
ASBL, Brussels, Belgium. 

4. CD-DTU V2 (2007) Technical design rules and calculation works and reinforced 
concrete structures following the limit state method. Règles BAEL 91 révisées 
99 (150thedn) GTCC Works Section 1: reinforced concrete) + Amendment A1, 
CSTB, France. 

5. Genest N (2004) Reinforced Concrete. Transports Québec, Canada. 

6. Kong FK, Evans RH (1996) Reinforced and Prestressed Concrete. (3rdedn), 
Chapman and Hall, London, UK.

7. Legrand P, Nana JMT (2009) During the following concrete-BAEL changes rules 
91 and 99. International Institute for Water and Environmental Engineering, 
France.

8. Mosley WH, Bungey GH, Hulse R (1990) Reinforced concrete design. (5thedn), 
MacMillan, UK. 

9. Multon S (2012) Béton armé. Internet Document. 

10. Ray SS (1995) Reinforced concrete: analysis and design (1stedn), Blackwell 
Science, UK. 

11. Reynolds CE, Steedman JC (1999) Reinforced concrete designer’s handbook. 
(10thedn) E and FN Spon, UK.

12. Walraven JC (2008) Eurocode 2: Design of concrete structures. Delft University 
of Technology, Stevinweg, Delft, The Netherlands.

Figure 2.4: The variations of µ vs.  εst (Pivot B) in comparison with the codes.

Figure 2.5: The variations of ρ vs.  εst (Pivot B) in comparison with the codes.

Figure 2.6: The variations of µ − µe vs.  εst (Pivot B) in comparison with the 
codes.
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