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Introduction
Diabetes is one of the most common chronic illnesses in the world 

and 25.8 million individuals – 8.3% of the population– are afflicted in 
the United States alone with annual medical costs estimated at $174 
billion in 2007 [1]. While there are many life-threatening complications 
associated with diabetes, heart disease is one of the most severe 
with a higher than normal diabetes-associated death rate. Diabetic 
cardiomyopathy (DCM) is a diabetes-associated cardiovascular 
condition defined as ventricular dysfunction in the absence of other 
etiological factors, such as hypertension or coronary heart disease 
[2-4], which results in pathological alterations to the myocardium 
including circulatory defects, impaired heart muscle contraction, and 
progressive fibrosis. The elusive and poorly defined nature of DCM 
indicates that there exists a need for novel approaches for treatment 
of diabetic cardiomyopathy which may focus on alternative molecular 
mechanisms for the disease. Extracellular matrix (ECM) turnover 
and remodeling are essential in many physiological processes yet 
their regulation is impaired in DCM, leading to damaging structural, 
geometric and functional changes in the heart [2,3,5,6]. ECM turnover 
can be regulated by many factors, including matrix metalloproteinases 
(MMPs) [6], angiotensin II [7], aldosterone [4], nuclear factor kappa 
B (NF-κB) [8], transforming growth factor-beta 1 (TGF-β1) [9], nitric 
oxide [10], advanced glycation end products [5], and kinins [11]. 
Importantly, recent studies of diabetic human patients [12,13] and 
in animal models [7,9,14-16] suggest that MMP activity is impaired 
in diabetes, thus highlighting this particular mechanism as a novel 
therapeutic target. In particular, studies such as these have shown that 
dysregulation of cardiac MMP-2 expression contributes to the increased 
collagen deposition, progressive fibrosis, increased ventricular 

stiffness, and cardiac dysfunction seen in diabetic cardiomyopathy 
in rodent animal models. This MMP-2 deficiency likely stems from 
diabetes-related changes to the cardiac fibroblast phenotype, such 
as increased collagen synthesis by cardiac fibroblasts under diabetic 
conditions [17-19]. At the same time, studies in murine models of type 
II (db/db) diabetes have shown decreased MMP activation in diabetic 
fibroblasts, as well as impairments in vital cellular processes, including 
reduced growth factor expression and reduced cellular migration [20]. 
Therefore, overcoming the inhibitory effects of diabetic conditions on 
matrix remodeling by cardiac fibroblasts through stimulation of native 
MMP-2 expression or delivery of exogenous MMP-2 represents a novel 
target for therapeutic treatment of DCM.

Peptide nanofibers, such as RAD16-II, represent a scaffold-based 
tissue engineering approach which can be effectively used for local and 
controlled delivery of proteins to the myocardium [21,22] to promote 
cardiac regeneration via matrix remodeling. RAD16-II nanofibers 
are made via the spontaneous assembly of self-complementary 
oligopeptides consisting of alternating hydrophilic and hydrophobic 
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Abstract
In the diabetic heart, increased collagen accumulation, stiffness and cardiac dysfunction may be linked to the 

reduced expression and activity of matrix metalloproteinase-2 (MMP-2), suggesting that diabetes-associated cardiac 
fibrosis may be attenuated through stimulation of native MMP-2 expression or delivery of exogenous MMP-2. Peptide 
nanofibers were investigated as a microenvironment for cardiac regeneration via endogenous MMP-2 stimulation or 
exogenous MMP-2 delivery to promote matrix remodeling by wild type and diabetic cardiac fibroblasts. Cells were isolated 
from wild type or diabetic rat hearts and embedded in nanofibers, nanofibers with exogenous MMP-2, and Matrigel 
controls for 1, 6 and 14 days. Responses associated with matrix remodeling were assessed, including cell survival, 
native MMP-2 expression, ECM deposition and construct stiffness. The results demonstrate that nanofiber scaffolds 
provide an effective delivery vehicle with gradual MMP-2 release, while supporting long term survival and temporal 
matrix remodeling by cardiac fibroblasts. Nanofiber scaffolds maintained the balance between cell proliferation and 
apoptosis, in contrast to increased apoptosis with time in culture in Matrigel. Diabetic and wild type fibroblasts showed 
different temporal trends for MMP-2 expression, collagen I deposition and scaffold stiffness, indicating increased matrix 
remodeling by diabetic cells in the nanofiber microenvironment. The data suggest that stimulation of native MMP 
expression by the NFs alone may be the more Suitable strategy to improve reparative matrix remodeling. Overall, the 
results suggest that peptide nanofibers may be uniquely suited to increase local MMP-2 concentration in the diabetic 
heart and may be promising for applications focused on therapeutic matrix remodeling and cardiac regeneration.
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amino acids [23]. The material and biochemical properties of the 
nanofibers can be easily tailored via sequence alterations and peptide 
concentration. RAD16-II and similar nanofibers have been extensively 
studied in vitro for controlled protein delivery [24,25]. Additionally, 
these nanofibers have been used in vivo for temporally-controlled and 
localized cardiac delivery of proteins, including growth factors IGF-
1 [21], PDGF-BB [24], and SDF-1 [22]. Importantly, nanofiber-based 
scaffolds represent a potentially very attractive proteolytically-stable 
microenvironment suitable for MMP delivery, in contrast to native 
ECM-based materials which are rapidly degraded by the proteases 
expressed by the cells or present in the extracellular environment. Our 
previous studies have demonstrated that RAD16-II peptide nanofibers 
significantly enhance native expression of MMP-2 by human dermal 
fibroblasts as compared with collagen I controls, while maintaining 
long-term cell survival and scaffold stability [26]. The goal of this study 
was to determine if self-assembling peptide nanofibers could be used 
to create a proteolytically stable extracellular microenvironment for 
long-term MMP delivery and enhancement of cardiac remodeling. 
This study tested the hypothesis that increased MMP-2 concentration, 
either native or exogenous, in the nanofiber microenvironment would 
promote matrix remodeling by diabetic cardiac fibroblasts in vitro. Our 
results suggest that a nanofiber-based approach may be a promising 
cardiac tissue engineering strategy to stimulate reparative extracellular 
matrix remodeling in the diabetic heart.

Materials and Methods
MMP-2/NF delivery system

To quantify protein release in vitro from peptide nanofibers (NFs), 
active human MMP-2 was incorporated into the NFs. Human MMP-
2 was selected in order to distinguish it from the native rat MMP-2 
expressed by fibroblasts in subsequent experiments. Active human MMP-
2 (EMD Chemicals, Gibbstown, NJ) was incorporated into nanofibers 
(RAD16-II, (RARADADA)2, 1.0% w/w, SynBioSci, Livermore, CA) via 
non-covalent binding at 100ng/ml. This concentration was selected 
as it falls well below the peptide nanofibers protein binding capacity 
(~1.0 ng protein/μg peptide [24]) and is similar to normal cardiac 
MMP- 2 levels [27,28]. Nanofibers without MMP-2 and Matrigel (BD 
Biosciences, Bedford, MA) served as controls. 75μl of scaffold solution 
was added to culture inserts and incubated in phosphate-buffered 
saline (PBS) at 37ºC to form three-dimensional scaffolds. Supernatant 
(PBS after incubation) was collected and replaced at 0.5, 1, 2, 4, 6, 12, 
24, 36, 48, and 72 hrs. Supernatant samples were tested using Human 
MMP-2 Quantikine ELISA Kit (R&D Systems, Minneapolis, MN) to 
determine MMP-2 release kinetics from NFs.

Streptozotocin type I diabetes rat model

All animal procedures were performed using protocols approved 
by the University of Cincinnati Institutional Animal Care and Use 
Committee. Diabetic (db) and wild type (wt) cardiac fibroblasts were 
isolated from 12-16 week old female Sprague Dawley rats (SAS SD 
Strain 400, Charles River, Wilmington, MA). Type I diabetes was 
induced in 8 week old rats using a single intraperitoneal injection of 
streptozotocin (70 mg/kg, Sigma-Aldrich, St. Louis, MO) [29]. The 
streptozotocin rat model was chosen as it closely mimics the time-
dependent disease progression of diabetic cardiomyopathy [30]. 
Immediate onset of diabetes was confirmed with serum glucose levels 
>450mg/dl. Six weeks after injection, diabetic animals and age and 
strain-matched wild type controls were sacrificed and heart tissue was 
harvested either for cardiac cell isolation or embedded in paraffin for 
histological analysis.

Picrosirius red staining 

Sections of heart tissue were harvested, fixed in 10% formalin, 
paraffin embedded, and sectioned at 5 μm thickness. To assess cardiac 
fibrosis, fibrillar collagen content was measured using picrosirius red 
staining of cardiac tissue sections, imaged under polarized light [31]. 

Cell isolation
For cell isolation, heart tissue were harvested and washed in cold 

PBS several times, finely chopped and digested first in trypsin (1 mg/
ml, Sigma-Aldrich, St. Louis, MO) at room temperature for 1 hour 
and then collagenase I (172U/ml, Worthington Biochemical Corp., 
Lakewood, NJ) at 37°C for 45 minutes. Supernatant containing cells 
was separated from remaining tissue and centrifuged. The cell pellet 
was resuspended and added to uncoated cell culture dishes for 2 hours 
to allow for attachment and cultured in Medium 199 (HyClone, Logan, 
UT) containing 10% fetal bovine serum (FBS; Atlanta Biologicals, 
Lawrenceville, GA), 1% Antibiotic-Antimycotic (Atlanta Biologicals, 
Lawrenceville, GA), 10 μg/ml heparin (Sigma-Aldrich, St. Louis, MO), 
and 0.2 ng/mL cell growth supplement (Sigma-Aldrich, St. Louis, MO) 
as previously described [26,32]. Cell cultures were maintained at 37ºC 
in 100% humidified air containing 5% CO2. Cells of passage 4-10 were 
used in all experiments. 

Sample preparation

To quantify the effects of peptide nanofibers (NFs) on native MMP 
release and matrix remodeling by wild type (wt) and diabetic (db) 
cardiac fibroblasts, a total of six experimental groups were created: NF, 
NF+MMP, Matrigel, each with wt or db cells. Active human MMP-2 
was incorporated into the NFs for exogenous protein delivery in order 
to distinguish it from the native rat MMP-2 expressed by the cells. 
Matrigel was selected as a control three-dimensional microenvironment 
as it does not induce MMP-2 expression and activation in vitro [33,34].

Diabetic and wild type fibroblasts (passages 4-10) were 
three-dimensionally embedded in nanofibers (NF, RAD16-II, 
(RARADADA)2, 1.0% w/w, SynBioSci, Livermore, CA), NFs+100 ng/
ml active human MMP-2 (NF+MMP, EMD Chemicals, Gibbstown, 
NJ), and Matrigel (BD Biosciences, Bedford, MA) at a density of 
2.5x106 cells/ml (protein expression, rheometry, and cell proliferation) 
or surface seeded at 1.0x104 cells/insert (cell apoptosis). Scaffolds 
without cells served as controls for protein expression and rheometry 
experiments. Samples were cultured for 1, 6 and 14 days with daily 
media changes. For all ELISA experiments, cell culture medium (M199 
with 10% FBS, 1% Antibiotic-Antimycotic, and 10μg/ml heparin) 
without growth supplement was used with daily medium changes. 

Cell phenotype

Staining was performed to confirm fibroblast phenotype of the 
primary cells and for visualization of cells within the three-dimensional 
scaffolds. Wild type and diabetic fibroblasts were either cultured 
in gelatin-coated wells in 24-well tissue culture plates until near 
confluency or embedded in NF, NF+MMP and Matrigel scaffolds at a 
density of 2.5x106 cells/ml and cultured with daily media changes for 
1, 6 and 14 days. Samples were fixed with methanol/acetone. Samples 
were stained with vimentin (a fibroblast marker [35]) and α-smooth 
muscle actin (α-SMA, a marker of myofibroblasts [36]) primary 
antibodies (Sigma-Aldrich, St. Louis, MO) and appropriate fluorescent 
secondary antibodies (Alexa Fluor®, Invitrogen Corp., Carlsbad, CA) 
and DAPI (Invitrogen Corp., Carlsbad, CA). Imaging of stained cells 
was performed with an inverted fluorescent microscope (Olympus 
IX81) and positive stained cells were counted (3 images/sample).
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Cell apoptosis

 LIVE/DEAD® Kit (Molecular Probes, Carlsbad, CA) was used to 
assess cell apoptosis at 1, 6 and 14 days in culture. The kit was used per 
manufacturer instructions with 30 minute incubation with Calcein AM 
and Ethidium homodimer-1 followed by imaging of stained cells with 
an inverted fluorescent microscope (Olympus IX81). Total numbers 
of live and dead cells were counted (3 images/sample) to determine 
percentage of apoptotic cells.

Cell proliferation

 CellTiter 96® Aqueous non-radioactive cell proliferation assay 
(Promega Corporation, Madison, WI) was used to assess cell 
proliferation at 1, 6, and 14 days in culture. Cells were embedded 
in scaffolds at a density of 2.5x106 cells/ml and cultured with daily 
medium changes. At each time point, samples were incubated in 
medium containing MTS/PMS solution for 3 hours per manufacturer 
instructions. Media samples from culture inserts were placed in a 96-
well plate and absorbance was measured at 490nm using an ELISA 
plate reader. All data were normalized to day 1 values for analyses. 
After testing, MTS/PMS medium was aspirated and fresh medium was 
added to the samples. 

Sample total protein content determination 

 Cell-scaffold constructs were cultured in no growth factor 
medium (cell culture medium without additional growth factor 
supplementation) and collected at days 1, 6 and 14. Samples were stored 
in TriReagent (Molecular Research Center, Cincinnati, OH) at -80ºC 
until testing. Protein isolation was performed per the manufacturer’s 
protocol. Total protein content in the samples was determined using 
Coomassie Plus Assay Kit (Thermo Fisher Scientific, Rockford, IL).

Protein expression using Enzyme-Linked Immunosorbent 
Assay (ELISA)

 Cell-scaffold constructs were cultured in no growth factor 
medium (cell culture medium without additional growth factor 
supplementation) and media and matrix samples were collected at days 
1, 6 and 14 and stored at -80ºC until testing. ELISAs were performed 
as described in [37] to determine protein concentrations in medium 
samples (Rat MMP-2 - antibodies from R&D Systems, Minneapolis, 
MN) and matrix samples (Rat MMP-2, Rat Collagen I – antibodies from 
Pierce Biotechnology, Rockford, IL, and Rat Collagen IV – antibodies 
from Abcam, Cambridge, MA). Protein expression in matrix samples 
was normalized using total protein content. For all ELISAs, additional 
controls of the cell culture medium alone (containing 10% serum) and 
noncellular scaffolds were included to confirm that protein content in 
both the serum and scaffold would not affect protein expression and 
detection, with no differences observed between control samples and 
the 0 pg/ml standard. 

Mechanical testing of cell-scaffold constructs using rheometry

 Elastic moduli (G’) of NF, NF+MMP and Matrigel with living cells 
or scaffolds alone (controls) at 1, 6, and 14 days were measured with 
a parallel-plate rheometer (Bohlin Instruments Inc., East Brunswick, 
NJ) as described previously [26]. Briefly, circular constructs of 8mm 
diameter and approximately 500μm height were formed on glass slides 
using molds, covered with cell culture medium and cultured within an 
incubator with daily medium changes. For testing, glass slides were 
transferred and secured to the bottom plate of the rheometer and the 
top parallel plate was lowered to a gap height which ensured complete 

contact with the sample. A constant strain amplitude (γ=0.01) 
frequency sweep (f=0.1-10 Hz) was applied, with the measured elastic 
modulus (G’) serving as an indicator of overall cell-seeded construct 
stiffness. Moduli values measured at 0.1 Hz are reported in the text. 

Statistical analyses
 For each experiment, the sample size was n= 4 and all experiments 

were repeated twice. Multi-factor ANOVA and post-hoc tests were 
used to determine the effects of scaffold type (NF, NF+MMP, or 
Matrigel), diabetic condition (db or wt), and culture time (1, 6, or 14 
days) on matrix remodeling (MMP-2, collagen I and IV expression), 
cell proliferation and apoptosis, and mechanical stiffness. All tests were 
run at a significance level of p = 0.05.

Results
Streptozotocin type I diabetes animal model results in 
substantial cardiac fibrosis at 6 weeks post STZ injection

 Picrosirius red staining was performed on wild type and diabetic 
heart tissue sections. The staining demonstrated that mostly reticular, 
non-fibrillar collagen (appearing as green or white) was present in 
wild type control animal hearts (Figure 1A), while significant cardiac 
fibrosis was seen in the diabetic heart (Figure 1B; yellow, orange, and 
red staining) at 6 weeks post STZ injection. These results validate both 
the use of the STZ type I diabetic rat model as well as the 6 week time 
frame for cardiac fibrosis and diabetic cardiomyopathy development. 
Cardiac fibroblasts harvested from heart tissue of wild type and STZ 
type I diabetic rats were used for the following experiments.

Peptide nanofibers provide a stable microenvironment for 
controlled released of MMP-2

 ELISA was used to measure the release kinetics of human MMP-
2 from RAD16-II nanofibers (Figure 2). Results showed a higher 
immediate release initially at 0.5 hr (4.6±2.0 % of total MMP-2), 1 hr 
(2.5±2.3 % of total MMP-2) and 2 hrs (1.1±0.5 % of total MMP-2). 
After this initial burst, release slowed and remained relatively constant 
around 1% of total MMP-2 incorporated even as the time between 
supernatant collections increased. By 72 hrs, the total cumulative 
release was approximately 16% of the total MMP-2 incorporated 
initially into the nanofiber scaffold. This indicates successful MMP-2 
incorporation into the NFs which allows for sustained protein release. 

Peptide nanofibers provide a stable microenvironment, 
supporting long term cardiac fibroblast survival

 Staining of wt and db cells both plated and embedded in 

wild type myocardium diabetic myocardiumA) B)

LVLV

Figure 1: Evidence of cardiac fibrosis in the diabetic heart 6 weeks post strep-
tozotocin injection. Picrosirius red staining of the rat myocardium shows the 
presence of cardiac fibrosis (golden red) in the left ventricle of heart tissue 
from STZ type I diabetic animals (right panel), as compared to heart tissue 
from age- and strain-matched wild type controls (left panel). Scale bar rep-
resents 200μm.
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NF, NF+MMP and Matrigel was performed to confirm fibroblast 
phenotype and morphology within the scaffolds (Figure 3). All cells 
were positive for vimentin, an intermediate filament associated protein 
expressed by fibroblasts [35]. Additionally, approximately 70-80% of 
cells were also positive for α-SMA, an intermediate filament associated 
protein expressed by myofibroblasts [36]. These observations are 
consistent with previous studies, where primary fibroblasts expressed a 
myofibroblast phenotype in culture, characterized by increased α-SMA 
expression [38]. This activated fibroblast phenotype is critical in wound 
healing [36] and indicates an active matrix remodeling response by the 
fibroblasts in the nanofiber scaffold, which is important for the results 
of this study.

To determine if the peptide microenvironment supports long-
term cardiac fibroblast survival and assess cell proliferation, LIVE/
DEAD® and MTS-based cell proliferation assays were performed on 

cells embedded in NF, NF+MMP and Matrigel and cultured up to 
14 days. Results from the LIVE/DEAD® assay demonstrated that wild 
type and diabetic cell apoptosis levels (Figure 4) were less than 15% 
in NF, NF+MMP and Matrigel scaffolds. The number of apoptotic 
diabetic cells at day 1 was significantly higher than that in the wild 
type cells in Matrigel scaffolds (p<0.05), with a similar trend observed 
between db and wt cells cultured in NF-based scaffolds. The results 
for later time points (days 6 and 14) demonstrate that this trend was 
actually reversed, with higher levels of apoptosis in the wt cells as 
compared to db cells (p<0.05 for NF+MMP and Matrigel scaffolds). 
Interestingly, this increase in apoptosis at the later time points seemed 
to be compensated for by the increases in cell proliferation in the NF-
based scaffolds, but not in Matrigel, with the total number of viable 
cells remaining at 95% or greater of the 125,000 total cells initially 
embedded within NF and NF+MMP scaffolds, with no significant 
differences observed between wild type and diabetic fibroblasts. Cell 
number (Figure 5) increased in both NF and NF+MMP scaffolds from 
day 1 to day 6 in both wt (p<0.05) and db cells (p<0.05 for NF+MMP 
scaffold). No differences in numbers of either wild type or diabetic 
cells were observed with the addition of exogenous MMP-2 to the NFs. 
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Figure 2: MMP-2 release kinetics from peptide nanofibers. Active human 
MMP-2 was incorporated into NFs at a concentration of 100 ng/ml and release 
kinetics were measure by performing ELISA on supernatant samples at 0.5, 1, 
2, 4, 6, 12, 24, 36, 48, and 72 hours. There was a higher immediate release ini-
tially at 0.5 hr, 1 and 2 hrs. After this initial burst, release slowed and remained 
relatively constant. By 72 hrs, the total cumulative release was approximately 
16% of the total MMP-2 incorporated initially into the nanofiber scaffold.
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plated NF NF+MMP Matrigel

Figure 3: Staining for fibroblast phenotype. Cells were stained with antibodies 
for fibroblast marker vimentin (red) and myofibroblast marker α-smooth mus-
cle actin (α-SMA, green) and DAPI (blue). The top panels are wild type cells 
and the bottom panels are diabetic cells. Cells were either plated on gelatin 
coated dishes (left panels) or embedded in NF, NF+MMP, and Matrigel scaf-
folds (higher magnification panels, from left to right). All cells were positive 
for fibroblast marker vimentin and approximately 70-80% of cells were also 
positive for myofibroblast marker α-SMA. Scale bar in left panels is 100μm. 
Scale bar in higher magnification panels is 25μm.
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Figure 4: Cell apoptosis levels in cell-scaffold cultures. Cell apoptosis was 
measured using LIVE/DEAD® staining. a) The percentage of apoptotic wild 
type (wt) fibroblasts was less than 15% for in NF, NF+MMP and Matrigel scaf-
folds at days 1, 6 and 14. While no difference was observed in apoptosis in NF 
scaffold, there was a significant increase in apoptosis in both NF+MMP and 
Matrigel from day 1 to days 6 and 14. b) The percentage of apoptotic diabetic 
(db) fibroblasts was less than 15% for in NF, NF+MMP and Matrigel scaffolds 
at days 1, 6 and 14. Initial (day 1) apoptosis levels in db fibroblasts were signifi-
cantly higher and decreased at day 6 in all scaffolds. ^ p<0.05 when compared 
to day 1 samples of same experimental group, # p<0.05 when compared to wt 
samples of same experimental groups.
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Figure 5: Cell viability levels in cell-scaffold cultures. Cell viability was mea-
sured using MTS-based proliferation assay at days 1, 6, and 14. a) The num-
ber of viable wild type (wt) cells in culture remained at 95% or greater of the 
125,000 total cells initially embedded within NF and NF+MMP scaffolds. This 
was significantly higher than Matrigel cultures, where the number of viable cells 
by day 14 was less than 70% of initial cells numbers. b) The number of viable 
diabetic (db) cells in culture remained at 95% or greater of the 125,000 total 
cells initially embedded within NF and NF+MMP scaffolds. This was signifi-
cantly higher than Matrigel cultures, where the number of viable cells by day 14 
was at 82% of initial cells numbers. All data were normalized to day 1 values for 
analyses. * p<0.05 when compared to NF-based samples, ^ p<0.05 when com-
pared to day 1 samples of same experimental group, # p<0.05 when compared 
to wt samples of same experimental groups.
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In contrast, in Matrigel cultures, the number of viable cells by day 14 
was significantly decreased in both wild type and diabetic fibroblasts 
(p<0.05), with the cell number significantly lower than in NF and 
NF+MMP scaffolds (p<0.05).

Overall, these results indicate a balance between cell proliferation 
and apoptosis in the NF and NF+MMP scaffolds, in contrast to 
the shift toward more apoptosis with time in culture in Matrigel. 
Therefore, these results suggest an overall stability of the peptide 
nanofiber microenvironment both with and without added MMP-2, 
which supports long term cell survival in both wild type and diabetic 
fibroblasts in vitro. 

Expression of native MMP-2 by cardiac fibroblasts is 
increased in peptide nanofiber microenvironment 

Native rat MMP-2 concentration expressed by cardiac fibroblasts 
was measured in both the media and matrix using a rat MMP-2 ELISA 
(Figure 6). In media samples (Figures 6A-B), there was no difference 
in MMP-2 expression levels by wt cells between different time points 
in NF-based scaffolds. However, MMP-2 expression by db cells in 
these scaffolds was lower at day 1 (p<0.05 vs. wt NF and NF+MMP) 
and subsequently increased in the NF group (p<0.05 vs. day 1). No 
differences in native MMP-2 media expression by wild type cells was 
observed as a result of the addition of exogenous MMP-2 to the NFs, although in diabetic cells a significant increase at day 1 was observed 

between NF and NF+MMP scaffolds (p<0.05). In contrast to the MMP-
2 levels observed in NF-based samples, MMP-2 levels in Matrigel 
samples were lowest at day 1 in both db and wt cells and increased 
with time (p<0.05 vs. day 1). Additionally, MMP-2 expression by 
wt cells in Matrigel scaffolds at day 1 was significantly less than NF-
based scaffolds (p<0.05). The amount of MMP-2 bound to the NF and 
NF+MMP matrix (Figure 6C-D) showed an opposite trend from that 
in the media, with the highest MMP-2 concentration at day 1, which 
significantly decreased by day 6 in both wild type and diabetic fibroblasts 
(p<0.05). Additionally, matrix-bound MMP-2 levels by both wt and db 
fibroblasts were significantly higher in both NF and NF+MMP scaffolds 
than in Matrigel at each time point (p<0.05). No differences in native 
MMP-2 levels in the matrix by wild type or diabetic fibroblasts were 
observed as a result of the addition of exogenous MMP-2 to the NFs. 

Native extracellular matrix deposition by cardiac fibroblasts 
is supported by peptide nanofiber microenvironment 

Collagen I (col I) and Collagen IV (col IV) ELISAs on matrix 
samples were performed to determine the concentration of native ECM 
deposited by wild type and diabetic fibroblasts. Due to the fact that the 
Matrigel scaffold itself contains a significant amount of col I and IV, no 
comparison with NF and NF+MMP groups were made.

There were no differences seen in collagen I deposition by wild 
type cells at any time point in NF and NF+MMP scaffolds (Figure 7). 
Additionally, no significant differences in collagen I deposition by wild 
type fibroblasts were observed as a result of the addition of exogenous 
MMP-2 to the NFs. However, in diabetic cells, there was a significant 
temporal decrease in collagen I levels in NF scaffolds (p<0.05), where 
collagen I levels were significantly lower at day 14 as compared to 
NF+MMP scaffolds (p<0.05).

Interestingly, both wt and db cells demonstrated a temporal 
decrease in collagen IV levels (Figure 8), similar to that observed in 
collagen I levels in diabetic cells only. This trend was significant in wild 
type cells, where deposition of col IV was significantly higher in NF-
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Figure 6: Native protein expression of matrix metalloproteinase -2. ELISA 
was performed on samples collected from cell-scaffold constructs at days 1, 
6 and 14 to determine concentration of native rat MMP-2 in the media (panels 
a and b) and matrix-bound (panels c and d). a) Native MMP-2 protein expres-
sion (ng MMP-2/ml) by wild type (wt) fibroblasts in NF, NF+MMP and Matrigel 
scaffolds as measured in media samples. MMP-2 expression was increased 
at day 1 in NF as compared to Matrigel, with no effect of exogenous MMP-2 
(NF+MMP). b) Native MMP-2 protein expression (ng MMP-2/ml) by diabetic 
(db) fibroblasts in NF, NF+MMP and Matrigel scaffolds as measured in me-
dia samples. A temporal increase in MMP-2 expression was observed in NF 
scaffolds. c) Native MMP-2 protein expression (pg MMP-2/ug total protein) by 
wild type (wt) fibroblasts in NF, NF+MMP and Matrigel scaffolds as measured 
in matrix samples. MMP2 expression was increased in NF-based scaffolds 
as compared to Matrigel, with no effect of exogenous MMP-2 (NF+MMP). 
A temporal decrease was observed in MMP-2 expression in NF scaffolds. 
d) Native MMP-2 protein expression (pg MMP-2/ug total protein) by diabetic 
(db) fibroblasts in NF, NF+MMP and Matrigel scaffolds as measured in ma-
trix samples. MMP-2 expression was again increased in NF-based scaffolds 
as compared to Matrigel, with no effect of exogenous MMP-2 (NF+MMP). A 
temporal decrease was again observed in MMP-2 expression in NF scaffolds. 
* p<0.05 when compared to NF-based samples, + p<0.05 when compared 
to NF samples, ^ p<0.05 when compared to day 1 samples of same experi-
mental group, # p<0.05 when compared to wt samples of same experimental 
groups.
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Figure 7: Collagen I deposition. ELISA was performed on cell-scaffold matrix 
samples for wild type fibroblasts (panel a) and diabetic fibroblasts (panel b) at 
days 1, 6, and 14 to determine protein levels of collagen I (col I). a) Collagen I 
concentration (pg col I/ug total protein) for wild type (wt) fibroblasts in NF and 
NF+MMP scaffolds at days 1, 6 and 14. Steady collagen I levels were observed 
in NF, with no significant effect of exogenous MMP- 2 (NF+MMP). b) Collagen 
I concentration (pg col I/ug total protein) for diabetic (db) fibroblasts in NF and 
NF+MMP scaffolds at days 1, 6 and 14. A significant decrease in collagen I 
levels was observed in NF by day 14 consistent with ECM remodeling. The 
addition of exogenous MMP-2 (NF+MMP) resulted in significantly higher col-
lagen I levels at day 14 as compared to NF. Expression levels were normalized 
using total protein content as measured using Bradford assay. + p<0.05 when 
compared to NF samples, ^p<0.05 when compared to day 1 samples of same 
experimental group.
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based scaffolds initially at day 1 than later time points (p<0.05). There 
was significantly more collagen IV deposited by wild type cells at day 1 
in NF than in NF+MMP scaffolds (p<0.05).

The extracellular mechanical environment is regulated by 
matrix remodeling by cardiac fibroblasts

A parallel-plate rheometer was used to measure the mechanical 
properties of cell-scaffold constructs at days 1, 6, and 14, with elastic 
modulus (G’) serving as an indicator of construct stiffness (Figure 9). 
Previous studies indicate that overall cell-scaffold stiffness is regulated 
by a combination of extracellular matrix deposition, remodeling and 
scaffold disruption due to cell migration [26]. Scaffold-only controls 
at day 1 served as a baseline of scaffold stiffness (NF: 1.93±0.78 kPa, 
NF+MMP: 1.38±0.21 kPa, Matrigel: 0.09±0.03 kPa), with NF-based 
scaffolds significantly stiffer than Matrigel (p<0.05). For wt cells, no 
difference in NF scaffold stiffness was observed from day 1 to day 6. 
However, day 14 stiffness was significantly decreased from day 6 in 

NF scaffolds (p<0.05). In db cells, there was a significant increase in 
stiffness from day 1 to 6 (p<0.05), and again a significant decrease 
from day 6 to day 14 (p<0.05). In NF+MMP scaffolds, there was no 
difference in scaffold stiffness observed with time in either wild type 
or diabetic cell constructs. At all time points for both wild type and 
diabetic fibroblasts, both NF and NF+MMP scaffolds were significantly 
stiffer than Matrigel scaffolds (p<0.05), indicating the robust structural 
integrity of the peptide nanofibers.

Discussion 
The results of this study demonstrate that nanofiber microenvi-

ronment supports slow MMP-2 release without detrimental effects of 
increased MMP-2 levels (both native and exogenous) on cardiac fibro-
blast viability and behavior, indicating the promise of this material for 
therapies which may involve MMP-mediated tissue remodeling. In-
terestingly, there was no apparent effect of the presence of exogenous 
MMP in the NF scaffold on extracellular matrix remodeling, with both 
of the NF-based scaffolds stimulating significantly improved matrix 
remodeling response by cardiac fibroblasts as compared to Matrigel 
controls. Overall, the results demonstrate long-term survival and tem-
poral in vitro matrix remodeling by both wild type and diabetic cardiac 
fibroblasts in the NFs (Figure 10). Early at day 1, we see increased na-
tive MMP-2 expression and ECM deposition. By day 6, MMP-2 expres-
sion is still prominent with stiffness values consistent with ECM levels. 
However, by day 14 we see a shift towards more active matrix remodel-
ing, with decreased MMP-2 and ECM levels and decreased stiffness. 
These results are consistent with the normal wound healing response in 
cardiac tissue in vivo, which is characterized by initial increased MMP 
expression leading to net ECM degradation [39].

RAD16-II nanofibers were investigated in this study as a 
biomaterial strategy to increase local MMP-2 concentration, either via 
stimulation of native expression or delivery of exogenous protein, in 
order to promote extracellular matrix remodeling by cardiac fibroblasts 
in vitro. An RAD16-II peptide nanofibers approach was chosen based 
on ease of handling, proteolytic stability, and proven myocardial 
protein delivery capability [21,22,24]. Importantly, RAD16-II peptide 
nanofibers have been shown to significantly enhance native expression 
of MMP-2 by human dermal fibroblasts as compared with collagen I 
controls [26], which is particularly interesting as collagen I has been 
identified as a stimulus for MMP-2 activation [33, 40]. The results from 
this study extend this prior observation to another control scaffold, 
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Figure 8: Collagen IV deposition. ELISA was performed on cell-scaffold ma-
trix samples for wild type fibroblasts (panel a) and diabetic fibroblasts (panel 
b) at days 1, 6, and 14 to determine protein levels of collagen IV (col IV). a) 
Collagen IV concentration (pg col IV/ug total protein) for wild type (wt) fibro-
blasts in NF and NF+MMP scaffolds at days 1, 6 and 14. Collagen IV levels 
at day 1 were higher in NF than in NF+MMP scaffolds and decreased with 
time, indicating ECM remodeling. b) Collagen IV concentration (pg col IV/ug 
total protein) for diabetic (db) fibroblasts in NF and NF+MMP scaffolds at days 
1, 6 and 14. Collagen IV levels were highest at day 1 in NF scaffolds, with no 
effect of exogenous MMP-2 (NF+MMP). Expression levels were normalized 
using total protein content as measured using Bradford assay. + p<0.05 when 
compared to NF samples, ^p<0.05 when compared to day 1 samples of same 
experimental group.
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Figure 9: Stiffness of cell-scaffold constructs measured using rheometry. a) 
Elastic moduli (G’) values in kPa for wild type (wt) fibroblasts in NF, NF+MMP 
and Matrigel scaffolds at days 1, 6 and 14. NF and NF+MMP scaffolds are 
significantly stiffer than Matrigel at all time points. Decreased stiffness was ob-
served in NF scaffolds at day 14. No changes in stiffness were observed in 
NF+MMP scaffolds. b) Elastic moduli (G’) values in kPa for diabetic (db) fibro-
blasts in NF, NF+MMP and Matrigel scaffolds at days 1, 6 and 14. Again, NF 
and NF+MMP scaffolds are significantly stiffer than Matrigel at all time points. 
NF scaffolds exhibited a significant increase in stiffness at day 6 followed by 
a significant decrease at day 14. No changes in stiffness were observed in 
NF+MMP scaffolds. G’ (kPa) is reported at frequency of 0.1 Hz. * p<0.05 when 
compared to NF-based samples, + p<0.05 when compared to NF samples, ^ 
p<0.05 when compared to day 1 samples of same experimental group, $ p<0.05 
when compared to day 6 samples of same experimental group.
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Figure 10: Proposed schematic of extracellular matrix remodeling response 
by cardiac fibroblasts (both wild type and diabetic) in the peptide nanofiber 
scaffold. Increased native MMP-2 expression and ECM deposition by cardiac 
fibroblasts is seen early at day 1. By day 6, MMP-2 expression is still promi-
nent with stiffness values consistent with observed ECM levels. However, a 
shift towards more active matrix remodeling is seen by day 14, with decreased 
MMP-2 and ECM levels and decreased stiffness.
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with the RAD16- II nanofibers stimulating significantly higher native 
MMP-2 expression by cardiac fibroblasts, as compared to Matrigel 
controls. Furthermore, the measurement of cell-scaffold stiffness 
indicates that NF scaffolds retained their structural integrity and 
stability in the presence of high MMP-2 levels, likely due to absence 
of proteolytic degradation sites in the NF sequence. Importantly, our 
results also demonstrate that the NF microenvironment is supportive 
for diabetic, as well as normal, cardiac fibroblasts, in contrast to 
significantly increased death for both cell types in Matrigel controls at 
day 14 in culture. In fact, we have observed that the peptide nanofiber 
microenvironment consistently supports increased levels of MMP-
2 accompanied by low levels of apoptosis [26]. Previous studies in 
experimental models of diabetic cardiomyopathy have demonstrated 
decreased expression and activity of MMP-2 concomitant with 
increased cardiac apoptosis [9]. Further, it has been shown that 
MMP-2-mediated chemokine cleavage plays an important role in 
myocardial protection against inflammation-associated damage [41]. 
Additionally, in vitro studies on human umbilical vein endothelial cells 
have demonstrated increased MMP-2 activity results in a reduction in 
high glucose-induced cell apoptosis [42]. Such studies along with our 
results may indicate a potential connection between increased MMP- 2 
levels and increased cell survival in diabetic conditions [42,43]. Overall, 
our data indicates a balance between cell proliferation and apoptosis 
and an overall stability in the peptide nanofiber microenvironment 
which supports long term cell survival in cardiac fibroblasts in vitro, 
consistent with the previous studies of long term culture of endothelial 
cells in this microenvironment [26]. 

MMPs are regulated in vivo by inhibition via endogenous tissue 
inhibitors of metalloproteinases (TIMPs), with TIMP-1 and -2 
predominantly produced by cardiac fibroblasts [40]. In addition to 
its role as an endogenous inhibitor, TIMP-2 can form a complex with 
membrane-tethered membrane type 1 (MT1)-MMP and pro-MMP-2, 
leading to activation of MMP-2 [44] and therefore plays an important 
role in both inhibition and activation of MMP-2. In animal models 
of diabetes and diabetic cardiomyopathy, studies have demonstrated 
increased levels of TIMP-2 gene expression and protein levels [14,45] 
and MT1-MMP expression [46] concomitant with reduced expression 
and activity of MMP-2 [9,14-16,46]. Additionally, in a study of human 
patients with diabetes, increased levels of circulating TIMP-1 have 
been observed [5]. These previous studies may provide a mechanistic 
understanding to the observed cardiac fibrosis in diabetes, as not only 
is expression of both MMP-2 and its activator MT1- MMP decreased 
in diabetes, but TIMP levels are increased, contributing to diminished 
remodeling of the extracellular matrix. Our previous studies have 
demonstrated that the peptide nanofiber microenvironment supports 
increased levels of MMP-2/TIMP-2 complexes in vitro [26] which 
may indicate increased MMP-2 activation in our system. Therefore, 
the improved extracellular matrix degradation and remodeling 
observed in this study may be the result of increased MMP-2 
activation due to increased MMP-2/TIMP-2 complexes in the 
nanofiber microenvironment. Future studies will be directed toward 
comprehensive analysis of the mechanism of MMP-2 activation in the 
nanofiber microenvironment and the roles of TIMPs in this process. 

While our results demonstrate that NFs alone do increase native 
MMP-2 expression, we were also interested in the use of NFs as an 
exogenous protein delivery system. An RAD16-II scaffold-based 
approach for protein delivery is particularly attractive, because it allows 
for temporally-controlled and localized delivery, and can be achieved 
via either diffusion from or tethering to a scaffold, depending on 
protein size and binding affinity [47]. Additionally, increased peptide 

nanofiber density results in decreased protein diffusion [25], suggesting 
a straight-forward strategy for controlling protein release kinetics. 
Recent in vitro studies have examined the release of functional proteins 
and cytokines, from similar nanofiber scaffolds and have shown 
slow and sustained release profiles over 2 to 3 weeks, with diffusion 
through nanofibers dependent primarily on protein size [25,48]. For 
this study, we investigated the release kinetics of human MMP-2 from 
the RAD16-II nanofibers. The data showed that NF scaffolds can be 
effectively used as a MMP-2 delivery vehicle, with a faster initial release 
burst slowing to a more steady release rate and reaching a cumulative 
release of 16% by day 3. These results are consistent with previous 
studies on protein release from hydrogel scaffolds [25], with prolonged 
in vitro release of the incorporated MMP-2 due to entrapment in the 
highly entangled nanofiber structure. However, after delivery to the 
myocardium the peptide nanofibers would be subjected to intensive cell 
migration, particularly by highly invasive cardiac fibroblasts, leading to 
structural deformation and disruption of the nanofiber network [49] 
and increased release of the incorporated protein into the surrounding 
tissue. Thus, previous studies have shown temporal decrease (up to 28 
days) in retention of IGF-1 incorporated into NFs and injected into 
the myocardium of rats [21]. Additionally, studies have shown that 
RAD16-II remained present 28 days after treatment in diabetic wounds 
[50] and after injection into the myocardium in mice and rats [21,51] 
without significant immune response, allowing for slow and sustained 
protein release. 

Interestingly however, while the RAD16-II nanofibers clearly are 
effective as a protein delivery vehicle, no clear significant increase in 
fibroblast matrix remodeling response was seen with incorporation 
of exogenous MMP-2 into NFs. Therefore, the results from this 
study suggest that for cardiac tissue remodeling, using the NFs alone 
to stimulate native MMP-2 expression may ultimately be the more 
suitable strategy due to a better risk-benefit value by removing the 
need to add further complexity to cardiac tissue engineering strategies 
through the addition of an exogenous agent such as MMP-2 [52]. This 
strategy may potentially be applied in vivo using the DCM model and 
injecting NFs into the fibrotic left ventricular wall of the myocardium 
as a regenerative stimulus. Nanofibers have been previously injected 
into the myocardium at multiple sites either alone [51] or as a delivery 
vehicle for exogenous protein and/or cells [22,24,53,54] with promising 
results. By injecting nanofibers at multiple sites in the fibrotic diabetic 
heart muscle, the potential stimulatory effects will be pervasive 
throughout the tissue, attenuating the observed MMP-2 deficiency and 
inducing reparative matrix remodeling and cardiac regeneration. 

From a clinical perspective, diabetes leads to high myocardial 
stiffness which is ultimately associated with a poorer prognosis and 
heart failure for patients [55-57]. Cardiac cells, including cardiac 
fibroblasts and cardiomyocytes, play an important role in the 
development increased stiffness in the diabetic heart [18,43,58], which 
may result from excessive fibrosis, high cardiomyocyte stiffness and 
deposition of advanced glycation end products (AGEs) [59-61]. This 
study focused on the fibrotic mechanism for diabetic cardiomyopathy 
and a potential strategy to address it using the nanofiber technology. 
In this respect, previous studies suggest the major role for cardiac 
fibroblasts in both physiological and pathological extracellular matrix 
homoeostasis [40,62-64], as well as dysregulation of physiological 
cardiac matrix remodeling under diabetic conditions [14,15,18]. These 
observations suggest that diabetic conditions may lead to an impaired 
matrix remodeling response by cardiac fibroblasts via a MMP-related 
mechanism. Therefore, cardiac fibroblasts were the primary cell 
type investigated in our study. The results of this study suggest that 
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this impairment in matrix remodeling may be attenuated through 
stimulation of native MMP-2 expression in the RAD16-II peptide 
nanofiber scaffold, as relatively small differences in matrix remodeling 
response were seen between diabetic and wild type cardiac fibroblasts. 
Additionally, previous studies have demonstrated that cardiac 
fibroblasts also respond to pro-fibrotic cytokines (i.e. TGF-β) which 
are expressed by cardiomyocytes [43,64] in high glucose conditions. 
In addition to causing cardiac fibroblast activation and stimulating 
fibrotic remodeling, TGF-β1 can contribute to cardiac dysregulation 
via an autocrine loop involving SMAD signaling [43,65]. Therefore, 
investigating the intercellular signaling between cardiomyocytes 
and cardiac fibroblasts is extremely important for understanding the 
overall mechanisms of cardiac remodeling in diabetes. Our previous 
studies [26] elucidated the chemical and mechanical regulation 
of capillary morphogenesis by fibroblasts and demonstrated that 
the nanofiber microenvironment supports endothelial-fibroblasts 
angiogenic interactions in vitro. Our results suggest that the nanofiber 
microenvironment can promote matrix remodeling without excessive 
stiffening (which may be caused by cell-mediated contraction seen 
in other scaffolds [66,67]). Therefore, the nanofiber technology may 
provide an attractive platform, as it allows for studies of cell-cell 
interactions and paracrine signaling using three-dimensional co-
culture of cardiac fibroblasts, cardiomyocytes and/or endothelial 
cells in the chemically-controlled pro-angiogenic microenvironment 
[26, 68], emphasizing the potential of this material for cardiac tissue 
engineering applications. 

In summary, the findings from our study may contribute the 
development of novel therapeutic strategies for the promotion of 
reparative matrix remodeling and cardiac regeneration in diabetic 
cardiomyopathy. DCM leads to excess collagen deposition, myocardial 
fibrosis, and cardiac hypertrophy [2,5]. The prevention and treatment 
of DCM is a clinically relevant and active research focus, with studies 
suggesting that glycemic control is beneficial early in myocardial 
dysfunction [3], however late diagnoses of diabetes and/or DCM 
may limit this preventative measure. Neurohormonal antagonism 
has demonstrated preserved diastolic function in the diabetic heart in 
animal models [3,7], however, it has not yet been translated to clinical 
studies. While strategies such as these appear promising, there still exists 
a need for novel approaches for treatment of diabetic cardiomyopathy 
which may focus on alternative molecular mechanisms for the disease, 
including cardiac dysregulation of MMP-2 expression and activity [9,14-
16]. In this study, we observed that increased MMP-2 concentration 
resulting from the nanofiber microenvironment improved in vitro 
matrix remodeling by cardiac fibroblasts, both wild type and diabetic. 
Furthermore, RAD16-II and similar nanofibers are easily administered 
and have been locally injected into the myocardium either alone [51] 
or as a protein delivery vehicle [21,22,24]. Therefore, the results of this 
study suggest that peptide nanofibers may be a uniquely suited cardiac 
tissue engineering substrate to increase local MMP-2 concentration 
in the diabetic heart, leading to therapeutic matrix remodeling and 
cardiac regeneration.
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