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According to classical genetics, humans have two copies of each 
region of DNA. During the past decade, however, a large body of 
research has emerged demonstrating that this is something of an 
oversimplification [1-3]. Even phenotypically normal individuals have 
many stretches of their genome in which more or fewer than two copies 
are found – these stretches have been estimated to constitute roughly 
5% of the entire genome [4]. Such genetic variations are referred to as 
Copy Number Variants (CNVs).

In the wake of the Human Genome Project, a tremendous effort has 
been spent on understanding the genetic basis of human variation and 
disease through Genome-Wide Association (GWA) studies. The vast 
majority of this effort has focused on one-base-pair differences between 
individuals, termed Single Nucleotide Polymorphisms (SNPs). As the 
research on copy-number variation demonstrates, however, SNPs 
represent only one type of genetic variation.

One effort to quantify the relative contributions of SNPs and CNVs 
on gene expression estimated that SNPs were responsible for 84% of the 
explainable variation, while CNVs were responsible for 17%, with only 
1% resulting from overlapping effects [5]. This 17% represents a sizable 
degree of genetic variation that has been understudied. Furthermore, 
some have argued that CNVs are more likely, a priori, to play a role 
in common diseases because, given that they represent a more subtle, 
quantitative genetic variation, they are less likely to have been selected 
out of the population by evolutionary pressures [6]. Indeed, CNVs have 
been linked to a number of diseases such as Crohn’s disease, psoriasis, 
and autism [7-9].

Fortunately, CNV information can be mined from existing data 
collected by GWA studies, thereby avoiding the considerable costs 
of carrying out new studies. One of the limiting factors-perhaps 
the limiting factor-in carrying out genome-wide CNV association 
studies, however, is a challenge of analyzing the data. While methods 
to determine the locations in which an individual has gained or lost 
copies of genetic material are fairly well-developed [10,11], methods 
for integrating these CNV calls into an association study are “still in 
[their] infancy” [12]. Relative to that of CNVs, genome-wide analysis 
of SNPs is straightforward: at every genetic marker, each individual is 
genotyped (AA, AB, or BB) and an association test is carried out. An 
adjustment for multiple comparisons then preserves the overall type I 
error rate.

A similar analytic strategy does not readily apply to CNV association 
studies, for two primary reasons. First, the uncertainty in a CNV call is 
much greater than that in a SNP call. For each type of calling, the goal 
is to classify a sample into one of three groups (AA/AB/BB for a SNP, 
gain/loss/neutral for a CNV) based on probe intensity measurements. 
However, for a SNP, one obtains a two-dimensional measure 
(intensities for both the A and B probes); for CNVs, one obtains only 
a one-dimensional measure (total intensity). Consequently, there is a 
much greater separation between classes for SNPs, and more extensive 
misclassification in CNV genotyping.

The second reason is that, unlike SNPs, CNVs span multiple 

markers and introduce an added complexity: that of estimating the 
boundaries of the CNV. These two features of CNV data are illustrated 
in the left panel of figure 1, which comes from an analysis of real 
data described in Breheny et al. [13]. As noted earlier, CNV calling is 
based on a one-dimensional measure of intensity; the gray region was 
determined to have a loss of copy, leading to lower intensity throughout 
that region. As figure 1 indicates, there is no clear separation between 
intensities originating from the white (neutral) and gray (loss) regions. 
Furthermore, the precise boundaries of the CNV are not obvious.

Each of these two features of CNV data complicates association 
testing. Ignoring misclassification error may considerably diminish 
the power of a test [14], while the imprecise estimation of boundaries 
makes it difficult to determine whether two partially overlapping CNVs 
represent the same genetic variation. Reasonable decision rules for 
two overlapping CNVs may be proposed; however, even with as few 
as three CNVs, patterns may arise for which there is no unambiguous 
resolution. For example, consider a scenario with three CNVs: A, B, 
and C. Suppose A has 50% overlap with B, B has 50% overlap with C, 
but A and C have no overlap. How many association tests should one 
carry out? A variety of ad-hoc rules have been proposed to address this 
scenario, but one can easily imagine how intractable the problem may 
become with, say, 25 partially overlapping CNVs. Dealing with partial 
overlap is both burdensome in practice and likely to be statistically 
inefficient.

To avoid these complications, one may avoid CNV calling 
altogether and carry out marker-level testing (as opposed to the 
previous approach, which we refer to as variant-level testing). Marker-
level tests can be simple, such as carrying out t-tests of CNV intensities 
between cases and controls, or more complex, involving mixture 
models to incorporate uncertainty in copy number [15]. However, 
due to the noise in intensity measurements, single-marker tests tend 
to have low power and require very large sample sizes (n>4,000 for the 
study in Barnes et al. [15]).

An intriguing possibility is to supplement the power of single-
marker tests by pooling results from neighboring tests. This idea is 
illustrated in the right panel of figure 1. If a CNV spanning multiple 
marker is present and associated with the phenotypic outcome of 
interest, this will induce marker-level associations spanning the 
genomic region covered by the CNV. Although no single p-value in 
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figure 1 is particularly small, the fact that so many low p-values are 
present in a single cluster is suggestive of a CNV that is associated 
with the outcome. Breheny et al. [13] proposed this idea and presented 
evidence suggesting that aggregation of marker-level tests could prove 
more powerful than both single-marker testing and variant-level 
testing. A more careful examination of marker-level test aggregation 
was conducted in Li and Breheny [16], which demonstrated that 
proper inference under aggregation is not trivial. The null distribution 
for any quantity which aggregates marker-level tests is complicated by 
the fact that a CNV can span multiple markers, thereby introducing 
local correlations among the test results even under the null hypothesis. 
This violates exchangeability among the marker-level tests and 
invalidates simple approaches to deriving a null distribution. In Li and 
Breheny [16], the authors proposed a permutation-based approach 
for estimating the empirical null distribution in a way that preserves 
the local correlations among nearby tests. In addition, they proved 
that their approach maintains the correct family-wise error rate for 
a genome-wide analysis. One downside of their approach, of course, 
is its computationally intensive nature, which would impede the use 
of sophisticated marker-level tests such as those in Barnes et al. [15]. 
Whether there exist other, less intensive methods for aggregating test 
results across markers remain to be seen.

There are interesting possibilities for improving variant-level tests 
as well, based on the idea of joint CNV calling. Rather than calling 
CNVs separately for each sample, several authors [17-19] have recently 
proposed methods for jointly calling common CNVs across multiple 
samples, potentially eliminating the partial overlap issue discussed 
earlier. These methods are still new, however, and the feasibility of 
extending them to CNV association studies on the genome-wide level 
has not yet been investigated.

Our focus in this editorial has been on analytical approaches 
for incorporating information across markers and across samples 
when performing association tests. We do not wish to downplay 
other important statistical issues in CNV association studies, such as 
normalization of the data, proper experimental design, and controlling 
for confounding factors. Rather, we hope to have highlighted some 
interesting features of CNV data, limitations of existing approaches, 
possible avenues for improvement, and open statistical questions 
surrounding this important area of scientific inquiry.
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Figure 1: Left: Illustration of CNV calling. Vertical axis is total intensity, normalized so that 0 corresponds to two copies. The gray shading indicates 
a region identified as a CNV. Right: Illustration of marker-level testing. The p-values from marker-level tests are plotted on the negative log scale.
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