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Introduction
Karhunen-Loeve Transform (KLT, a.k.a. principal component 

analysis or singular value decomposition) is an important tool in 
dimension reduction, data mining, and denoising [1,2]. It transforms 
the original data set into a series of orthogonal eigenmodes with 
eigenvalues λ1 ≤ λ2 ≤ … ≤ λm. It is believed that when a data set is 
corrupted by additive independently and identically-distributed (IID) 
noise with variance σ2, the unitarity of the KLT ensures that the noise 
in each eigenmode is also white with variance σ2 [3,4,5]. Based on this 
assumption, the noise variance can be estimated from the smallest 
eigenvalue λ1 [6]. Furthermore, a threshold can be applied safely to 
remove all noise-only eigenmodes, eg. truncate all eigenmodes with λi 
≤ σ2 (assume σ2 is known) in order to suppress noise using a KLT filter 
[5,7]. 

However, the noise variance in KLT eigenmodes may not be 
uniformly distributed. When noise-only eigenmodes appear, a 
theoretical result of the random matrix theory (RMT) [8] predicts 
that the corresponding eigenvalues follow the Marcenko-Pastur (MP) 
distribution [9,10], instead of the uniform distribution. Therefore, 
the “common sense” of the noise distribution in KLT eigenmodes 
mentioned above may not be accurate enough. In this communication, 
we apply this RMT result to study the noise variance distribution in 
KLT eigenmodes. We show that the variances in noise-only eigenmodes 
follow the MP distribution, while noise variances in signal-dominated 
eigenmodes still follow the uniform distribution. In addition, 
the smallest eigenvalue λ1 could be much lower than σ2, and the 
eigenvalues of some noise-only eigenmodes may be much higher than 
σ2. Based on this result, first, we derive the mathematical expectation 
of the noise level in each eigenmode; second, we derive an analytical 
relation between the threshold or filter cutoff and the noise level in the 
KLT filtered data set. However, IID noise is rarely the case in practice. 
Noise usually has some degree of correlation and amplitude variation. 

Therefore, MP distribution is not applicable. According to our previous 
study, the MP distribution can be modified slightly by re-define a 
parameter, and become applicable to some important non-IID noise 
scenario [11]. Numerical simulations are used to validate our results, 
and real-time MR cardiac cine images are used to show that our results 
can be utilized in experimental data analysis. Therefore, our research 
helps clarify theoretically the noise reduction effect of KLT-based filter 
used in medical imaging society [5,7], and provides an explanation why 
the random matrix theory based noise level estimation [11] is better 
than smallest eigenvalue based method [6]. 

Theory
Additive independently and identically-distributed noise

We assume that a data set can be represented by an m by n matrix 
A, without loss of generality, m<n. A can be regarded as a sum of a 
low rank signal matrix S and a random matrix N with IID noise 
(variance=σ2) in each entry: 

A=S + N    (1) 

The rank of S is r, and r<m. In other words, there is intrinsic 
redundancy in S and A. The empirical covariance matrix R of A, 
defined as AAT/n (AT represents the transpose of A) is full rank. When 

*Corresponding author: Hui Xue, Siemens Corporation, Corporate Research, 
755 College Road East, Princeton, NJ 08540, USA, Tel.+1 (609) 734-6560; Mobile: 
+1 (609) 712-3398; Fax: +1 (609) 734-6565; E-mail: mosaicxue@hotmail.com

Received December 01, 2012; Accepted February 01, 2013; Published February 
03, 2013

Citation: Ding Y, Xue H, Jin N, Chung YC, Liu X, et al. (2013) The Asymptotic 
Noise Distribution in Karhunen-Loeve Transform Eigenmodes. J Health Med 
Inform 4: 122. doi:10.4172/2157-7420.1000122

Copyright: © 2013 Ding Y, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Karhunen-Loeve Transform (KLT) is widely used in signal processing. Yet the well-accepted result is that, the noise 

is uniformly distributed in all eigenmodes is not accurate. We apply a result of the random matrix theory to understand 
the asymptotic noise distribution in KLT eigenmodes. Noise variances in noise-only eigenmodes follow the Marcenko-
Pastur distribution, while noise variances in signal-dominated eigenmodes still follow the uniform distribution. Both the 
mathematical expectation of noise level in each eigenmode and an analytical formula of KLT filter noise reduction effect 
with a hard threshold were derived. Numerical simulations agree with our theoretical analysis. The noise variance of 
an eigenmode may deviate more than 60% from the uniform distribution. These results can be modified slightly, and 
generalized to non-IID (independently and identically-distributed) noise scenario. Magnetic resonance imaging experi-
ments show that the generalized result is applicable and accurate. These generic results can help us understand the 
noise behavior in the KLT and related topics. 

The Asymptotic Noise Distribution in Karhunen-Loeve Transform 
Eigenmodes
Yu Ding1,2, Hui Xue3*, Ning Jin4, Yiu-Cho Chung2, Xin Liu2, Yongqin Zhang2, and Orlando P. Simonetti1,5,6,7

1Davis Heart and Lung Research Institute, The Ohio State University, Columbus, USA 
2Shenzhen Institute of Advanced Technology of Chinese Academy of Science, Shenzhen, Guangdong, China
3Siemens Corporate Research, Princeton, USA
4Siemens Medical Solutions, Inc., Columbus, USA 
5Department of Internal Medicine, The Ohio State University, Columbus, USA 
6Department of Biomedical Engineering, The Ohio State University, Columbus, USA
7Department of Radiology, The Ohio State University, Columbus, USA

Journal of 
Health & Medical InformaticsJo

ur
na

l o
f H

ealth & Medical Inform
atics

ISSN: 2157-7420



Citation: Ding Y, Xue H, Jin N, Chung YC, Liu X, et al. (2013) The Asymptotic Noise Distribution in Karhunen-Loeve Transform Eigenmodes. J Health 
Med Inform 4: 122. doi:10.4172/2157-7420.1000122

Page 2 of 4

Volume 4 • Issue 2 • 1000122
J Health Med Inform
ISSN: 2157-7420 JHMI, an open access journal

the smallest non-zero eigenvalue of the covariance matrix of S satisfies 
λmin≥ σ2√(d/n), the Probability Distribution Function (PDF) of the 
smallest d (where d=m-r) eigenvalues of R follows the Marcenko-
Pastur (MP) distribution from the RMT [9,10]: 

 
2

1( ) max(0, ( )( ))
2

p λ λ λ λ λ
πασ λ + −= − −

,                (2) 

Where α=d/n, 2 2(1 )λ σ α± = ± . Equation 2 is an asymptotic 
result when n,d >>1 (from our experience n,d>10 is sufficient, in 
agreement with previously published observations [12]. The first d 
eigenmodes are noise-only (eigenmodes are sorted in ascending order 
by eigenvalues); eigenvalues λi (i=1, …, d) are the noise variances of the 
corresponding eigenmodes. Therefore, the noise variance PDF of the 
first d eigenmodes follows equation 2. Please refer to equation A.2 in 
Appendix for the mathematical expectation of the noise level in each 
eigenmode. The smallest eigenvalue λ1 is lower than σ2. When α~1, λ1 is 
a poor estimation of σ2 (λ1<<σ2).

The last r eigenmodes are signal-dominated. Because signal is 
uncorrelated with noise and due to the unitarity of KLT, noise variances 
are identical (=σ2) in the last r eigenmodes. Therefore, noise variances 
in first d eigenmodes follow the MP distribution, while noise variances 
in last r eigenmodes follow the uniform distribution. 

The KLT filter can be applied by using a threshold to truncate some 
eigenmodes, and then reconstructing the filtered matrix Â using the 
remaining eigenmodes. Therefore, Â is a low-rank approximation 
of A, and is optimal in the 2-norm sense [5,13]. The noise variance 
distribution in eigenmodes can describe the noise variance in Â when 
the eigenvalue threshold=λc. Suppose k eigenmodes with eigenvalues 
≤ λc are truncated. The mean noise variance f(k) of KLT filtered Â is:

  
2

21 ( )ˆ( ) i
i

m h kf k
m m

σσ −
= =∑                (3)

where 2ˆiσ   is the mean noise variance of the ith row of Â; h(k) is the 
total noise variance in k truncated eigenmodes. In order to deduce 
Equation 3, we take advantages of two properties: first, the KLT is 
unitary; second, the noise variance is additive. When λc ≥ λ+, 

h(k)=kσ2                  (4a)

When λc<λ+, 
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Please refer to the Appendix for more details.

When α→0, p(λ)→δ(λ−σ2), (4b) is identical to (4a), and (3) becomes:
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Additive Non-IID Noise

The MP-law is only applicable to additive IID noise in rank deficit 
data matrix A. If matrix N is non-IID additive noise, then the noise 
covariance of matrix N become a fourth order tensor Cij,kl, where (i, j) 
and (k, l) are indices of two data points in matrix A. If the noise is IID, 
tensor Cij,kl degenerates into the multiplication of two identity matrices: 
σ2δijδkl, where σ2 is the noise variance, and δij is the Kronecker delta. 

Our recent study found that the MP-law is still applicable when the 
noise covariance tensor can be written as: Dijδkl, where D is a generic 
2-D covariance matrix. In other words, the noise is IID only in one 
dimension. In practice, this is a very common scenario when the noise 
has spatial correlations but no temporal correlations, such as Magnetic 
Resonance (MR) dynamic imaging. It has been shown that a modified 
MP-law is still applicable in dynamic MR images, i.e. equation 2 is 
still accurate enough with modified parameters: n→n’, α→α’=d/n’, 

2 2(1 )λ λ σ α± ±′ ′→ = ±   [11]. Hence, the rest of the equations are also 
applicable because they are derived from equation 2. Please note that 
the application of modified MP distribution to non-IID noise scenario 
is only an empirical approximation, a strict mathematical proof is 
warranted. 

Methods
We tested the effectiveness of equations 2-4, using numerical 

simulations and real-time dynamic MR cardiac imaging in a volunteer. 
The human study was approved by The Ohio State University’s Human 
Subjects Committee and all subjects gave written informed consent to 
participate. The volunteer images were acquired on a 3.0T MRI system 
(MAGNETOM Trio, Siemens Healthcare Inc., Erlangen, Germany). A 
32-channel cardiac array coil (In vivo, Gainesville, FL) was used for data 
acquisition. All data was processed using Matlab® 2011a (MathWorks, 
Natick, Massachusetts) running on a personal computer with Intel® 
Core(TM)2 Quad 3.0 GHz CPU, 16 GB system RAM. 

A numerical model was constructed to simulate a dynamic image 
series with temporal redundancy. The model consisted of a bright circle 
on a dark background [5]. A series of 256 images was synthesized, each 
image having 64×64 pixels (i.e. m=256, n=64×64 in data matrix A, 
with columns representing temporal samples and rows representing 
spatial samples). The circle diameter was varied sinusoidally through 
29 unique radii with step size=1.0 pixel (r=29, d=227, α=227/(64×64) 
in equation 2). The smallest non-zero eigenvalue of the temporal 
covariance matrix of the image series was 5.2. It was then corrupted by 
Gaussian IID noise with σ2=1.0. 

First, the temporal KLT was applied to the simulated images 
series. The noise variance in each eigenmode was measured, plotted, 
and compared to the prediction of equation A.2. The first 227 (d) 
eigenmodes were noise-only. Second, the noise variance of the KLT 
filtered images f(k) was measured by varying the number of truncated 
eigenmodes k. The difference between equation 3 and equation 5 was 
plotted and compared to the theoretical results. The noise variance was 
measured in a region outside of the beating disk with area=21% of the 
entire image. All simulations were performed 400 times, and results 
were averaged to suppress random fluctuations.

MR real-time cardiac cine images with uniformly down-sampled 
temporally-interleaved k-space were reconstructed using parallel MR 
technique TGRAPPA [14]. We acquired three SSFP real-time cine 
image series using TGRAPPA with parallel acceleration rates=5, in 
vertical and horizontal long-axis, and one short-axis views. Imaging 
parameters were: 192×95 matrix reconstructed from 192×15 acquired 
matrix, 6 mm thick slice, flip angle=48°, TE/TR=1.0/2.56 ms, pixel 
bandwidth=1447 Hz/pixel, FOV=380×285 mm2. A total of 256 frames 
were acquired per image series.

The temporal KLT was applied to the simulated images series. The 
number of noise-only eigenmodes and the mean noise variance were 
determined by maximizing the goodness-of-fit between MP-law and 
the smallest eigenvalues. More details of the fitting can be found in other 
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publication [11]. The noise variance in each noise-only eigenmode was 
measured, plotted, and compared to the prediction of equation A.2.

Results
The mean noise variance in each eigenmode was plotted in figure 

1. Notice the jump between the noise-only eigenmodes and the signal 
dominated eigenmodes at λ227. The highest eigenvalue=1.53, more than 
50% higher than the added noise variance. Compared to the result 
predicted by equation 2, the maximum relative difference was less than 
2.1%. 

The difference between the measured and predicted mean noise 
variance in KLT filtered images as a function of the number of truncated 
eigenmodes (k) is plotted in figure 2. The noise variance predicted by 
equation 5 was subtracted from the results obtained from the simulated 
images. The maximum deviation between the theoretically predicted 
results and simulation was less than 3.8% of the mean noise variance. 

Figure 3 shows the cardiac image, and the corresponding 
eigenmodes used in the analysis. Figure 3c is the first eigenmode that is 
identified as signal dominated, and figure 3d is the last eigenmode that 
is identified as noise. The differences between them are too small to be 
distinguished by human eye easily. 

The variance of each eigenmode of real-time MR cardiac cine 
image series of the short-axis view was plotted in figure. 4. Below the 
cutoff of noise-only eigenmodes, variance of each eigenmode follow 
the prediction of the modified MP distribution. The difference between 
the variances of the first noise-only eigenmode and the last noise-only 

eigenmode is as large as 63%. Again, the uniform distribution is a poor 
approximation of noise distribution between eigenmodes.

The smallest eigenvalues in all three real-time cardiac MR cine 
image series follow the MP-law with modified parameters. The ratios 
of n’/n are 0.27, 0.23, and 0.25 for three image series. Since only 20% 
of raw data is collect when reconstructed using parallel imaging 
technique with acceleration factor=5, the modified parameter n’ can 
be interpreted as the fitted number of independent noise samples in 
the image series.

Discussion
Our results reveal the noise variance distribution among 

eigenmodes of the KLT, and provide a generic and accurate formula 
to quantify the noise reduction effect of the KLT filter with a hard 
threshold. Numerical simulations demonstrate that the PDF of the 
noise variance in noise-only eigenmodes follows equation 2, while 
the noise variance in signal-dominated eigenmodes is still uniformly 
distributed. The noise reduction effect of the KLT filter follows the 
prediction of equation 3 and 4 closely. When α~1, there is significant 
deviation from equation 5. Interestingly, when the eigenmode cutoff 

 

Figure 1: The mean noise variance measured in all eigenmodes. The solid line 
indicates the theoretical prediction of Equation (A.2), ○ represents the simula-
tion result.

 

Figure 2: The mean noise variance difference in the KLT filtered images, f0(k)- 
f(k) vs. the number of truncated eigenmode k. The dashed line indicates the 
theoretical calculation from (3) & (5), ○ represents the simulation result. 

a b
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Figure 3(a): The long axis view of the heart; (b) the eigenmode with the largest 
eigenvalue; (c) the first signal dominate eigenmode; (d) the last noise-only 
eigenmode. 

 

Figure 4: The mean noise variance measured in the first 148 eigenmodes 
in real-time cardiac MR cine image series, and first 115 eigenmodes were 
identified as noise-only. The dashed line indicates the theoretical prediction 
of Equation (A.2), ○ represents the experimental result. The vertical dotted 
line indicates the cutoff between noise-only eigenmodes and signal dominated 
eigenmodes.
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k>d, i.e., some of the signal-dominant eigenmodes are truncated,
equation 5 is still accurate regardless of the value of α.

When matrix N in equation 1 contains two types of non-IID noise, 
spatially correlated noise and spatially variant noise, such as the noise 
in the magnetic resonance images acquired with parallel imaging 
techniques, the MP distribution is still valid but with a modified spatial 
sample number n′<n. The n′ can be interpreted as the “effective” 
independent noise samples in each column of matrix N. Therefore, the 
noise reduction effect of the KLT filter can still be studied by the same 
approach. For an arbitrary data matrix A, the problem of estimation 
parameters r,n′,α and σ2 has been solved by maximizing statistical 
goodness-of-fit [11]. Therefore, the noise estimation method proposed 
by Ready [6] systematically underestimated the noise level, and should 
be replaced by the more precise method [11] based on the random 
matrix theory. 

Conclusion
We used the RMT to study the asymptotic noise variance 

distribution in KLT eigenmodes, as well as the noise reduction effect 
of the KLT filter. These results can be used to understand the noise 
behavior in the KLT and related topics.
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