Home   |  Publications   |   Conferences    |  Join   |   Contact   | Sitemap  

Organic Chemistry: Current Research

Open Access
ISSN: 2161-0401
home » towards-the-enzymatic-synthesis-of-carbohydrates-2161-0401 Rss Feed Rss Feed
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business
Editorial Open Access
Towards the Enzymatic Synthesis of Carbohydrates
Li Cai*
Department of Chemistry, University of South Carolina Salkehatchie, USA
Corresponding Author : Dr. Li Cai
Department of Chemistry
University of South Carolina Salkehatchie
Walterboro, SC 29488, USA
Tel: 843-549-6314 (Ext. 381)
E-mail: CAILI@mailbox.sc.edu
Received March 03, 2012; Accepted March 06, 2012; Published March 10, 2012
Citation: Cai L (2012) Towards the Enzymatic Synthesis of Carbohydrates. Organic Chem Current Res 1:e103. doi: 10.4172/2161-0401.1000e103
Copyright: © 2012 Cai L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google
Visit for more related articles at
DownloadOrganic Chemistry: Current Research
Three major repeating biomacromolecules, nucleic acid, protein, and carbohydrate carry out most of the information transfer in living systems. Nucleic acid carries genetic information in the form of DNA and RNA; PCR (Polymerase Chain Reaction), a revolutionary technique developed in 1983 by K. Mullis, has become an indispensable tool in biological and biomedical researches for nucleic acid synthesis. On the other hand, solid-phase peptide synthesis, pioneered by R. B. Merrifield, allows preparation of desired peptides and proteins in vitro in a synthetic manner. However, due to the non-template based biosynthetic pathway of carbohydrates, access structurally defined homogeneous carbohydrate oligomers remains challenging when automated synthesis of oligonucleotides and oligopeptides is common.
Inventing new glycosylation reactions has been a long-standing passion for organic and carbohydrate chemists because carbohydrates represent a class of biopolymers which come in a far greater diversity of structures: branching character, stereochemical issue, various types of glycosidic bonds, and posttranslational modifications. A better understanding of the structures of naturally occurring oligosaccharides provides important information on the composition, linkage, branching type of these oligomers [1]. Key building blocks could thus be designed with appropriate protection groups to ensure desired linkage, branch and anomeric selectivity/specificity. With the development of modern organic chemistry, most naturally occurring oligosaccharides and glycoconjugates are synthetically available. However, these chemical approaches are hindered by tedious and time consuming protection and deprotection steps, unsatisfactory stereoselectivities, and low overall yields, making it impractical to prepare long-chain oligosaccharides and polysaccharides.
Bioorganic chemistry, the topic of a special issue of Organic Chemistry: Current Research, addresses exactly this difficulty, with reactions catalyzed by carbohydrate processing enzymes found in nature. Dating back half a century, this field was initiated with the growing understanding of sugar biosynthetic pathways [2] and the corresponding key enzymes: glycosyltransferases, glycosidases and their mutants. Though different enzymes utilize distinct donor molecules (e.g. sugar nucleotide, nitrophenyl glycoside, glycosylfluoride) and follow different mechanisms, the concept of “one enzyme-one linkage” makes enzymatic approaches, especially glycosyltransferases, a much more efficient, more regio/stereoselective, and more feasible route to produce oligosaccharides in large scale.
With the wide use of glycosyltransferases, attention has shifted to the combination of glycosyltransferase with other enzymes to produce more complex carbohydrates or glycoconjugates with biologically important elements. During the past twenty years, a multi-enzyme one-pot reaction fashion with only one purification step has becoming very popular in carbohydrate synthesis since most of the key enzymes are proved to be active under similar reaction conditions [3-4]. In addition to enhanced efficiency, problems such as the availability of high cost sugar nucleotide donors and product inhibition of glycosyltransferases have also been solved by following the biosynthetic pathways: The one-pot reaction can be further conjugated to sugar donor recycling system which generates expensive sugar donors from cheap precursors, realizing large-scale low-cost enzymatic synthesis of complex carbohydrates.
Another subject to emerge over the past decade is that in vitro multi-enzyme carbohydrate synthesis is transferred onto solid beads or into whole cells. Wang provided examples (“superbeads”) wherein multi-enzymes are immobilized on Ni-nitrilotriacetic acid beads [5]. This technique enables reusing of the immobilized enzymes for several rounds and automated synthesis. To go one step further, many groups illustrated whole engineered bacterial cells expressing multi-enzymes for the large-scale synthesis of carbohydrates. This unique biotechnology avoids isolation and purification of the key enzymes. On this basis, Wang’s “superbug” uses a single Escherichia coli strain containing all necessary genes for sugar donor regeneration and oligosaccharide synthesis on one single plasmid, demonstrating a powerful living synthetic factory [6].
The above examples testify the progress of carbohydrate synthesis with the development of organic synthesis, protein purification, and molecular genetics. Putative candidates for carbohydrateactive enzymes are adding to the current list with the advances of bioinformatics. Some exciting applications are emerging in this field, including synthesis and modification of carbohydrates via metabolic pathway engineering in organisms ranging from bacteria to zebrafish. These achievements, together with earlier examples offer a range of possibilities for the synthesis of biomaterials. In this regard, enzymatic synthesis of carbohydrates affords great opportunists for chemists or synthetic biochemists seeking to find new catalysts and molecular tools. We hope the journal “Organic Chemistry: Current Research” intrigues and inspires more chemists to achieve this goal.

Select your language of interest to view the total content in your interested language
Share This Article
Relevant Topics
Disc Advanced Mathematics for Physical Chemistry
Disc Advances in Physical Chemistry Methods
Disc Alkaloids
Disc Analytical technique
Disc Anti-Allergic
Disc Anti-Infective Agents in Medicinal Chemistry
Disc Anticancer Agents in Medicinal Chemistry
Disc Applied Medicinal Chemistry
Disc Applied Physical Chemistry
Disc Atmospheric Physical Chemistry
Disc BioMolecular Chemistry
Disc Bioactive Compounds
Disc Bioorganic Medicinal Chemistry
Disc Biophysical Analysis
Disc Carbohydrates
Disc Cellular Biophysics
Disc Chemical Biology of Molecules
Disc Chemical Biophysics
Disc Chemical Pharmacology
Disc Chiropractic Biophysics
Disc Computational Biophysics
Disc Experimental Physical Chemistry
Disc Flavonoids
Disc Glycosides
Disc Hybridization
Disc Hydrocarbons
Disc Isoprenoids
Disc Macromolecular Physical Chemistry
Disc Mathematical Biophysics
Disc Medical Biophysics
Disc Medicinal Biochemistry
Disc Medicinal Chemical Research
Disc Medicinal Companies and Market Analysis
Disc Medicinal Organic Chemistry
Disc Membrane Biophysics
Disc Modern Analytical Chemistry
Disc Modern Chemistry Formulaes
Disc Modern Experimental Chemistry
Disc Modern Heterocyclic Chemistry
Disc Modern Inorganic Chemistry
Disc Modern Nuclear Chemistry
Disc Modern Organometallic Chemistry
Disc Modern Physical Organic Chemistry
Disc Modern Stoichiochemistry
Disc Modern Theoretical Chemistry
Disc Molecular Biophysics
Disc Molecular Physical Chemistry
Disc Natural Medicine
Disc Natural Products
Disc Organic Chemistry
Disc Oxidation
Disc Phospholipids
Disc Physical Chemistry Applications
Disc Physical Chemistry for Polymers
Disc Physical Methods in Inorganic Chemistry
Disc Physical Organic Chemistry
Disc Phyto Chemistry
Disc Polyketides
Disc Quantum Biophysics
Disc Radiation Biophysics
Disc Radiation Physics
Disc Secondary Metabolites
Disc Single Molecule Biophysics
Disc Synthetic Chemistry
Disc Synthetic Medicinal Chemistry
Disc Terpenoids
Related Journals
Disc Medicinal Chemistry Journal
Disc Modern Chemistry Journal
Disc Natural Chemistry Journal
Disc Physical Chemistry Journal
Article Tools
Disc Export citation
Disc Share/Blog this article

Post your comment

Your question:
Anti Spam Code:
  Reload  Can't read the image? click here to refresh

OMICS International Conferences 2015-16

Meet Inspiring Speakers and Experts at our 1000+ Global Annual Meetings
Conferences By Country
  USA   Spain   Poland
  Australia   Canada   Austria
  UAE   Switzerland   Turkey
  Italy   France   Finland
  Germany   India   Ukraine
  UK   Malaysia   Denmark
  Japan   Singapore   Mexico
  Brazil   South Africa   Norway
  South Korea   New Zealand   China
  Netherlands   Philippines
Medical & Clinical Conferences
Microbiology Oncology & Cancer
Diabetes & Endocrinology Cardiology
Nursing Dentistry
Healthcare Management Physical Therapy Rehabilitation
Neuroscience Psychiatry
Immunology Infectious Diseases
Gastroenterology Medical Ethics & Health Policies
Genetics & Molecular Biology Palliativecare
Pathology Reproductive Medicine & Women Healthcare
Alternative Healthcare Surgery
Pediatrics Radiology
Conferences by Subject
Pharmaceutical Sciences
Pharma Marketing & Industry
Environmental Science
Physics & Materials Science
EEE & Engineering
Chemical Engineering
Business Management
Geology & Earth science
©2008-2015 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version