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Abstract

Background

Gene therapy is a form of molecular medicine which treats

genetic diseases by replacing a defective gene, responsible

for the pathology, with a functional one. The basic principle

is to introduce a piece of genetic material into cells via a

virus which represents the vector for gene therapy. The

virus integrates with the cell DNA and thus delivers the

genetic material into the cell nucleus. This process is called

integration and may alter the host cell’s DNA. Recent stud-

ies based on cellular and animal models (Bushman, 2005)

reported empirical evidence of preference for certain

retroviral vectors, i.e. those deriving from Moloney Murine

Leukemia Virus (MLV), to integrate near the start of tran-

scriptional units, whereas others (like Simian Immunodefi-

ciency Virus (SIV)- and Human Immunodeficiency Virus

(HIV)-based vectors) did not show the same tendency. The

mutation may alter the expression of genes in the vicinity of

the insertion or, when inserted within a gene, alter the gene

product. When the affected gene is a cancer gene (either a

proto-oncogene or a tumor suppressor gene), activation of

the proto-oncogene or inactivation of the tumor-suppressor

gene can cause uncontrolled proliferation (cell division) of

cells. Eventually this may give rise to tumors. These can-

cer-causing insertions are referred to as insertional mu-

tagenesis or oncogenic integration. A tumor could develop

when an accumulation of oncogenic insertions causes un-

controlled proliferation of a cell. This has been seen both in

In gene therapy the integration process of the viral DNA genome into the host cell genome is a necessary step

for virus integration. Just few years ago, retrovirus integration was believed to be random and the chance of

accidentally activating a gene was considered remote. It has been seen that this process is not random and

different viruses may show different preferences to integrate in some specific areas of the genome. Tumorigensis

associated to some studies in gene therapy is suspected to be caused by insertion process. Depending on whether

the provirus integrates into or in the vicinity of genes (Transcription Start Sites , TSS), normal trascription can be

enhanced or disrupted thus inducing oncogenic mutations. This is called “insertional mutagenesis”. Investigat-

ing whether an area over the genome could be favoured by retrovirus integration is a crucial aspect in gene

therapy. These area are called “Common Integration Sites”(CIS)or “hotspots”. In the paper we stressed the

importance of developing statistical procedures leading to a unique definition of CIS rather than a “problem

related” definition. We here propose some statistical solutions for the search of hotspots based on the “Peaksheight

distribution”, which account within the null hypothesis for the possible non-random behaviour of the integra-

tions.
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Figure 1: Integration site analysis in T cells. Green circles denote high integration density areas.

animal as well as human models. The related problem of

safety of a vector is a major hurdle (Montini et al., 2006). It

has been observed that in retroviral integration different

vectors show distinct target site preferences, thus finding a

unique statistical criteria to detect accumulation of integra-

tion is a fundamental tool within the debate on safety of a

vector. (Recchia et al., 2006, Cassani et al., 2006). Some

approaches provided statistical and mathematical modelling

to to test the hypothesis of randomness (Abel et al., 2007;
Ambrosi et al., 2008). Moreover in the recent literature

(Cattoglio et al., 2007) it has been proved that analysis of

MLV integration patterns in natural or experimentally in-

duced leukemias/lymphomas showed the existence of in-

sertion sites recurrently associated with a malignant pheno-

type. These “common insertion sites” (CIS), also called

“hotspots” which include proto-oncogenes or other genes

associated with cell growth and proliferation, may present

when activated a causal relationship with the establishment

and/or progression of cancer. The definition of hotspot CIS

is however not unique and crucially “problem related”. A

first model to define a hotspot CIS has been provided by

Suzuki et al., (2002) and compares the mapped locations of

the proviruses in the isolated tumors to randomly generated

integrations from 100,000 Monte Carlo trials.This was done

to determine cutoffs for defining when two or more inte-

grations in close proximity were significant enough to as-

sume that it didn’t happen by chance. Basically the cutoffs

were within 30 kb for 2 integrations, 50 kb for 3 insertions

or 100 kb for 4 integrations. In terms of the null hypothesis

for  hotspot CIS analysis this is problematic. Definition of

hotspots is based on a comparison to a random set, but there

is a clear preference in integration that should be taken into

account in the null hypothesis.

Wu et al., (2005) showed that pre-established role in can-

cer is not sufficient support for the efficacy of the Suzuki

CIS technique. For instance expression level in MLV inte

gration may also play a role since MLV integrations are

biased towards genes with higher expression levels. A first

interesting way to account for this non-randomness in the

null hypothesis is the Wu et al., model which all ows 75% of

the integrations to occur randomly and 25% to integrate in a

Poisson distribution T5 kb around the transcriptional start

site.
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Figure 2: Integration distances distribution from transcription start site of the nearest gene.

This introduction was aimed at highlighting how statistics

and probability must play a fundamental role in establishing

a criteria to detect “accumulation” sites and preferences of

integration for a better understanding of “how safe” is a

vector in gene therapy. To do this we address the following

question: how can we distinguish the preferences of viruses

to integrate close to TSS from their “accumulation” due to

some other reason (for instance to the presence of some

particular gene).

Data and Experimental Design

In this paper we analyzed data derived from retroviral

transduction in T cells from leukemic patients treated with

allogeneic stem cell transplantation and donor lymphocytes

genetically modified with a suicide gene (HSV-TK).

Retroviral vectors integrate preferentially within or near tran-

scribed regions of the genome, with a preference for se-

quences around promoters and for genes active in T cells at

the time of transduction. For details on the whole data set

see Ambrosi et al., (2008). The following information are

reported:

• nucleotide (integration position)

• chromosomes

• integration distance from the TSS of genes in a window

of 100 kb

• expression data for genes involved in the integration

(hotspots and all)

• gene density in 1Mb neighbourhood

Figure 1 provides an example of Common Integration Site

(CIS) which are classified on the criteria of two integra-

tions occurring in a 100kb window. These can be visualized

on all chromosomes by high concentration of hit in a small

genomic area.

The observed distribution of integration distances from

TSS of the nearest gene are provided in Figure 2. This dis-

tribution seems consistent with the new findings in gene

therapy literature (among other Ambrosi et al., 2008) that

TSS sort of “attracts” integrations.

In this paper we provide some statistical proposals to in-

vestigate the real distributional “nature” of a hotspot. As

mentioned above we want to address the following ques-

tion: does the integrations distribution reflects a virus

natural attitude to integrate in some genetic areas (like

TSS) or are rather some genetic areas that do attract
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integrations due to their functional characteristics?

To explore this idea we compare the integration density

distribution with the TSS density distribution (which reflects

the gene density) like in Figure 3 (referred to the first chro-

mosome). Since the focus of this paper is on the statistical

procedure we illustrate our analysis with a small sample of

integrations on chromosome 1 only.

It can easily be observed that the two distributions show

similarities. This is a natural consequence of the fact that

this virus integrates preferably close to the TSS and thus

more frequently in high gene density areas. We next focus

on those areas that attract insertions of the retrovirus even

when no high gene density is revealed.

Statistical Procedure: the Peaks-Hight (P-H)

Method

A natural way to provide a statistical approach for the

identification of CIS in distributional terms is a kernel esti-

mation procedure (Ridder et al., 2006) to find the regions in

the genome that show a significant increase in insertion

density.

For any position over the genome, an estimate of the num-

ber of insertions is obtained by summing all the kernel func-

tions. (rectangular , Barlett-Epanechnikov, etc.).

Actually, the basic idea is to model non parametrically the

probability that an observation x will fall into a certain re-

gion, that is ( )x dxF f= ∫ with F a smoothed (or aver-

aged) version of the density function f(x). The kernel den-

sity estimator f
b
 (x) for the estimation of the density value

f (x) at target point x is a local average smoother that, for

random variable x
i
 in a prediction space calculate an aver-

age of the observations in a neighbourhood of the target

point:

1
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where k(⋅) denotes the Kernel function and b is the band-

width parameter which determines how large a

neighbourhood of the target point is. A large bandwidth gen-

erates a smoother curve, while a small bandwidth gener-

ates a wigglier curve, thus the choice of b being fundamen-

tal and much more important than the choice of kernel

(Hastie and Tibshirani, 1990). We use here a standard

Gaussian kernel.

Analys is is based on discrete data points indicating the

integration position. We are trying to establish how unusual

is the spatial patterning of these points. By turning the dis-

crete points into a continuous surface using Kernel estima-

tion, the data can then be explored. In particular we focus

on the maximum of the observed integration distribution es-

timated with by means of a Gaussian kernel. This is now

our new random variable, X  indicating integration peaks 

height (P-H).

In the same estimation context we set the null hypoth-

esis, H
0
: “integrations occur randomly over the genome”

Figure 3: Comparison between the integration density distribution and TSS density distribution.

i
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(theoretical peaks distribution, Figure 4) to account for natu-

ral integration preferences. To build this in terms of peaks

we compute the maximum over 1400 integrations which

are resampled from a uniform distribution 50000 times via

Monte Carlo method.

            are then computed for each estimated P-H value

from the theoretical peaks height distribution (Figure 5).

Correction for multiple comparisons is then applied, and

significant P-H values are extracted. The neighbourhood of

these identifies the “P-H hotspot”. In this contribution we

present results on Chromosome 1 only. Results reported in

Table 1 lead to identify nucleotide positions where a “real”

hotspot occurs (that is based on P-H based definition of

Hotspot). 7 hotspots can be identified after                 correc-

tions for multiple testing. This is a first step that could deal

Figure 4: Theoretical peaks distribution under the null hypothesis for Chromosome 1.

Figure 5: Observed peaks-height distribution. Red line shows the significative peaks with alpha =0.05.

p-values p-value
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Table 1: Estimation of the peaks and                    corrections for multiple testing (Beniamini-Hochberg, Holm).

N  where  peak  p-value p.BY p.Holm

1 8312086 6.849649e-09 2.038982e-01 1.0000000000 1.000000e+00 

2 26779431 1.161189e-08 1.542289e-03 0.0196776871 2.467662e-02 

3 44754312 1.634523e-08 4.252635e-06 0.0001627750 8.930533e-05 

4 54357331 6.687772e-09 2.278222e-01 1.0000000000 1.000000e+00 

5 66176432 1.183405e-08 1.190738e-03 0.0182307983 2.024254e-02 

6 86121164 5.974250e-09 3.523677e-01 1.0000000000 1.000000e+00 

7 100156345 3.847627e-09 7.956708e-01 1.0000000000 1.000000e+00 

8 110498058 1.615670e-08 4.252635e-06 0.0001627750 8.930533e-05 

9 120101077 2.428462e-09 9.607737e-01 1.0000000000 1.000000e+00 

10 143000584 7.288953e-09 1.483730e-01 1.0000000000 1.000000e+00 

11 147432746 9.236977e-09 2.559803e-02 0.2177326427 3.327743e-01 

12 153096065 9.539061e-09 1.874136e-02 0.1793373396 2.623791e-01 

13 164915166 5.593989e-09 4.302561e-01 1.0000000000 1.000000e+00 

14 175995572 2.424688e-09 9.611238e-01 1.0000000000 1.000000e+00 

15 179935272 2.416950e-09 9.619106e-01 1.0000000000 1.000000e+00 

16 188799598 7.036906e-09 1.785710e-01 1.0000000000 1.000000e+00 

17 196432767 1.483696e-08 1.559299e-05 0.0002984208 2.806739e-04 

18 203573473 1.574496e-08 7.087725e-06 0.0001808611 1.346668e-04 

19 221794586 3.942981e-09 7.788247e-01 1.0000000000 1.000000e+00 

20 231397605 1.148519e-08 1.859819e-03 0.0203391219 2.789728e-02 

21 242970474 6.522862e-09 2.540340e-01 1.0000000000 1.000000e+00 

p-values

to examine in terms of expression and properties the corre-

sponding genomic areas.

Final Remarks

The goal of this contribution was to provide some statisti-

cal considerations on the real nature of a hotspot. Statistical

criteria for the identification of regions which are favoured

by integrations (CIS or hotspots) are needed. We approached

this problem by considering CIS not just like an area with

very close integrations but like an area with very high inte-

gration density. Thus, we provide the null hypothesis based

on kernel estimation of the P-H distribution, when integra-

tion are uniformly distributed over the genome. This criteria

can be extended by considering a rectangular kernel, which

better resemble the finite support of the integration distribu-

tion. Moreover, based on the proposed criteria, we can com-

pare the “P-H  hotspot” with the transcription start site dis-

tribution to distinguish which “P-H hotspot” reflects the high

gene density areas, and which can really be thought as a

real “hotspot” and thus leading to genetic investigations.
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