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Introduction 
RNA-seq is a high-throughput sequencing technology used to 

measure differential expression (DE) of genes. RNA or cDNA samples 
are broken into small fragments from which short nucleotide sequences 
are generated. 

These fragments are aligned with their corresponding genic 
sequences and the number of fragments (counts) aligning to a gene 
provides a relative estimate of the level of expression of that gene under 
specified experimental conditions. Comparing these counts across 
several treatments gives insights into how the genome is responding to 
different treatments.

Many commonly used and freely available software tools have been 
developed for DE analysis of RNA-seq data. Most work directly on the 
count data, such as Cufflinks [1], Bioconductor packages edgeR [2], 
DESeq [3] and baySeq [4]. Some analysts are transforming count data 
into approximately normally shaped data and using software developed 
for microarray data, like the limma package with function voom [5]. 
Recent studies conducting comprehensive comparisons across software 
packages report that there is no single optimal approach [6,7]. Cu di 
does not perform as well probably due to its normalization procedure 
accounting for isoform-specific information. Interestingly, methods 
based on a variance-stabilizing transformation combined with limma 
(e.g voom+limma and vst+limma) perform well in general and are 
not sensitive to effects caused by outliers [6]. In addition, compare to 
Cu inks, the Bioconductor packages edgeR and DESeq support more 
complex multi-factor experiments.

There are many factors that may directly impact DE analysis such 
as normalization, counting, alignment, sequencing depth and sample 
size. This paper focuses on the effect of dispersion estimation. The 
packages edgeR and DESeq are designed to adjust for overdispersion, 
which occurs when variance cross biological replicates is larger than 
mean expression [8-10]. They use a negative binomial model which 
defines the relationship between variance and mean as=+2, where 
is the dispersion factor. In the real world, it is more likely that the 
individual gene has its own dispersion factor. In order to conduct 
hypothesis tests the dispersion must be estimated for each gene, which 
requires sharing information across genes due to the massive multiple 
testing and few replicates common to these types of projects. Different 

approaches for estimating dispersion are available. edgeR moderates 
gene-specific dispersion towards common/trended dispersion effect 
modeled by mean-variance relationship, while DESeq takes the 
maximum of individual dispersion and the trended dispersion, that 
making DESeq more conservative and edgeR more sensitive to outliers 
[11]. It is reported that various parameter settings in edgeR or DESeq 
could vary the results of DE analysis a lot, in terms of false discovery 
rate, type I error control and truly DE genes detection, probably due to 
inaccuracies in the estimation of the mean and dispersion parameters 
[6]. Cu di model the single-isoform gene variance similarly to DESeq 
approach, and uses a mixture model of negative binomial with the beta 
distribution parameters as mixture-weights for multi-isoforms genes 
[7].

In edgeR, common dispersion assumes that all genes share the 
same dispersion-too simplistic but useful as a baseline quantity. 
Trended dispersion is estimated by the fitted value from a smooth 
performed on a plot of binned common dispersion versus average 
abundance. This yields dispersion estimates for genes with similar 
average count, effectively averaging dispersion of nearest neighbor 
genes. The dispersion estimate is finalized by a weighted likelihood 
empirical Bayes approach [8], that shrinks the tagwise dispersion 
towards the common dispersion or trended dispersion. The prior 
degrees of freedom (parameter prior.df) indicates the weight given to 
the prior, and the larger the prior.df, the more the tagwise dispersion 
are squeezed towards the common/trended dispersion. The choice of 
final dispersion value used for each gene can affect significance, since 
the dispersion is the ruler upon which treatment mean differences 
are measured. Once the dispersion has been calculated, a modified 
generalized linear model (GLM), developed for multifactor RNA-seq 
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Abstract
In an analysis of RNA-Seq data from soybeans, initial significance testing using one software package produced very 

different gene lists from those yielded by another. How can this happen? This paper demonstrates how the disparities 
between the results were investigated, and can be explained. This type of contradiction can occur more generally in 
high-throughput analyses. To explore the model fitting and hypothesis testing, we implemented an interactive graphic 
that allows the exploration of the effect of dispersion estimation on the overall estimation of variance and differential 
expression tests. In addition, we propose a new procedure to test for the presence of any structure in biological data.
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experiments, where a complex design can be specified [12], can be 
used to identify genes differentially expressed between treatments. 
The significance of any co-efficient, or a contrast of treatments in the 
linear model can be performed using likelihood ratio statistics or quasi-
likelihood statistics. Benchmark data demonstrates that shrink tagwise 
estimates towards trended estimates gave better results than shrinking 
towards common dispersion estimates, and GLM method usually find 
more significant genes than exact test [6].

In this paper, we discuss the effect of dispersion estimation on 
RNA-seq differential expression analysis. The data used in this paper 
comes from a study on the iron efficiency response in two genotypes 
of soybean. Primary interest is on the iron response of one genotype 
(RPA), where Replication Protein A Subunit 3 has been silenced by a 
virus. The other genotype (EV) is the control which was infected by virus 
having an empty vector [13]. Several new visual tools are developed to 
help this investigation. Interactive plots enable the large data sets to be 
explored using traditional statistical plots. We can create plots of the 
dispersion under different scenarios and display the resulting p-values. 
Mousing over these plots brings up a classic model diagnostic plot for 
the gene in focus, in a relatively seamless manner, so that many of these 
individual gene charts can be viewed quickly. In addition, a new visual 
hypothesis test is conducted by comparing significant genes, with the 
most significant findings from data where structure has been removed.

The results section describes the experiment that brought the issue 
to our attention, and an explanation for the contradiction in results 
we found from using different dispersion estimation methods. It 
illustrates the interactive graphics capabilities that helped to examine 
the results, and that will help digest results in larger, complex RNA-seq 
studies. The section also describes the results of a visual hypothesis test 
to determine presence or absence of any structure in RNA-seq data. 
For plant data, like the soybean, where results can be complicated by 
genome duplications and environmental effects, this can be helpful 
guide for troubleshooting downstream analyses. It should be noted that 
a key feature of the visual analysis is the importance of plotting the raw 
data, in conjunction with estimated elements. Section 2 on materials 
and methods describes the dispersion estimation methods used, the 
methods behind the interactive graphics and the visual hypothesis test, 
and software used.

Materials and Methods 
The RNA libraries were prepared and then sequenced by Illumina 

(http://www.illumina.com/) equipment [13]. The 12 raw fastq les 
were then aligned by bowtie2 [14], and output to 12 bam format les. 
The bam les are available at: National Center for Biotechnology Short 
Read Archive (NCBI SRA Bioproject accession PRJNA190191 1). As 
documented in Atwood et al. [13], one sample was removed suring 
pre-processing for quality reasons, resulting in 11 samples. To use 
Cuffdiff, we split the data into two groups based on treatment to test 
iron condition effect, renamed the bam les to reflect the experimental 
design, and then perform two independent analyses for each subset. 
For the analysis using edgeR, the package Rsamtools was used to 
import the bam les and the package rtracklayer was used to import the 
gene features gff file. The package GenomicRanges was used to count 
reads for genes and output a matrix containing gene counts for each 
sample. All samples were analyzed together using a negative binomial 
generalized linear model. False discovery rate methods gave the final 
gene lists for each analysis.

To determine the effect of dispersion of DE analysis, we used edgeR 
in two different ways. In method 1, the approach mirrors the Cuffdiff 

analysis, and the samples corresponding to treatments EV and RPA are 
separated. Tests for differential expression are run on each subset. In 
method 2, both treatment and condition are analyzed together. Method 
1 treats the analysis like two separate single factor experiments, while 
method 2 treats the experiment as a 2X2 factorial design, followed by 
contrasts for checking specific effects. A major difference between the 
two approaches is the way dispersion is estimated. With method 1 
dispersion is estimated separately for each treatment, but for method 
2 it is estimated using both treatments, all samples. edgeR is used with 
negative bionomial GLM method, tagwise dispersion is squeezed 
towards trended dispersion instead of common dispersion.

The interactive graphics are programmed in R is using package 
cranvas [15], which is back-ended by packages qtpaint [16] and qtbase 
[17], handling the graphical elements using Qt libraries. Linking is 
controlled by the package plumbr [18], which registers the signal 
generated from the scatterplot. A function is attached to this signal 
which retrieves the data for the selected gene and generates the static 
interaction and model estimates plots using the ggplot2 [19] package. 
The response rate is fast, and performance with this size of data is quite 
reasonable to get a good overview of the data quickly. The packages 
cranvas, qtpaint, qtbase are available for most linux distributions 
and the Mac operating system, but not Windows yet. All of the other 
packages are available across all platforms. The R script for producing 
interactive diagnostic graphics is available at bitbucket (https://
bitbucket.org/yintengfei/paper_jdmgp_soybean/src/ ).

The inference test for structure involved recruiting independent 
observers using Amazon’s Mechanical Turk [20]. Amazon’s Mechanical 
Turk is used for tasks that humans can do better than computers, which 
is the case for reading statistical plots. The web page for this project is 
http://www.public.iastate.edu/~mahbub/feedback_turk9/homepage.
html. To test for the signficance of a treatment or interaction effect, 
in the RNA-Seq data, multiple lineups are generated and posted 
on this site. Observers saw three lineups: a very easy one generated 
from simulated data, and two containing data from the RNA-Seq 
experiment, with the most significantly expressed genes on treatment 
and interaction. The simulated data is used as a filter; responses from 
subjects who correctly pick the most structured plot in this lineup are 
kept for the two real lineups. For each of the treatment and interaction 
lineups, multiple versions were available, and chosen randomly to 
show a subject. Versions were made with the observed data plot placed 
in different locations on the page, and amongst different null plots. By 
doing this, we ensure that if the observed data is detectable, then it does 
not depend on where it was placed in the lineup, or what comparisons 
were used. Buja et al. [21] introduced the idea, Majumder et al. [22] 
validated the approach in controlled conditions, and Chowdhury 
et al. [23] used the approach to examine HDLSS data in controlled 
conditions.

Results 
Data, experiment, contradictions 

As can be seen from Table 1, the experimental design is a 2X2 
factorial design. There are two treatments (RPA, Empty Vector), two 

Table 1: A 2X2 factorial experimental design with two treatments and two iron 
conditions, three biological replicates in each.

Iron Condition
Treatment    I                      S                

RPA 1,2,3            1,2,3
EV 1,2,3            1,2,3

http://www.illumina.com/
https://bitbucket.org/yintengfei/paper_jdmgp_soybean/src/
https://bitbucket.org/yintengfei/paper_jdmgp_soybean/src/
http://www.public.iastate.edu/~mahbub/feedback_turk9/homepage.html
http://www.public.iastate.edu/~mahbub/feedback_turk9/homepage.html
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conditions (iron insufficient and sufficient), and three replicates in all 
but EV, iron insufficient which had two. In the two treatments, virus 
induced gene silencing was used to silence the expression of a DNA 
replication gene RPA (GmRPA3c). An empty vector (EV) control 
was used to control for the effect of the virus on plant growth and 
development [13]. The goal of the project was to identify the genes 
significantly affected by RPA (treatment), and/or iron availability 
(condition) among the greater than 40,000 genes in the soybean 
genome.

In other words, the question of interest is whether the two 
treatments responded differently to the two different conditions, and 
if so, which genes were responsible. That is, which genes have different 
expression patterns for the two treatments, particularly in regard to 
iron conditions.

Figure 1 illustrates the results. For method 1, treatment EV was 
reported to have 304 differentially expressed genes on iron condition, 
and treatment RPA had only 75 differentially expressed genes. An 
argument could be made that EV was responding more feverishly, 
either activating or de-activating genes, to the two conditions. But 
repeating the analysis using edger, flipped these results. With this 
method, EV was reported to have 90 differentially expressed genes 
and RPA, many more at 133 differentially expressed genes. Using only 
method 2, we might argue that RPA was responding more vigorously to 
the two conditions. The two methods report paradoxical conclusions.

Proposition: Dispersion for RPA is substantially greater than 
dispersion of EV. This would account for the contradictory numbers of 
significant genes based on analyzing data together or separately.

All tests for differences between treatments were constructed by 
measuring the difference between means using a ruler calibrated 
by the variance. The mean calculations are straightforward, and 
typically always the same. It is the variance estimation which can 
differ. When there is one experiment, the variances are calculated 
on the replicates of each treatment, and these are used to gauge the 
difference between the means. In RNA-Seq data, there are many 
genes being tested simultaneously, thought of as many simultaneous 
experiments. Therefore, the dispersion calculation takes into account 
the shared dispersion of all the genes, along with that of the treatment 
replicates for the individual gene. Figure 2 illustrates some of the ways 
that variance estimation difference can affect the interpretation of the 
difference between means.

We estimated an appropriate measure of dispersion for the soybean 
data, common biological coefficient of variation (BCV) [12], using the 
two different methods, one for all 11 samples and one for split data 
for different treatments (6 samples in RPA and 5 samples in EV). In 
addition, we estimated BCV for each factor combination to identify 
which factor contributed more to the common dispersion. The results 
are shown in Table 2. In general, treatment RPA has higher common 
dispersion, especially under insufficient iron conditions.

If the data is split and dispersion is estimated separately for 
each treatment, the ruler used to assess the difference between iron 
condition means for EV is smaller (0.076) than that for RPA (0.151), 
and thus more genes will be detected as different (304 vs 75). On the 
other hand, if dispersion is estimated across both treatments the ruler 
will be medium sized (0.095), which changes the interpretation of how 
big a difference there is between the two iron condition means. This 
is why the count of significant genes flips from 90 to 133 for the two 
treatments, EV and RPA, respectively when using different programs.

Interactive diagnostic graphics 

To explain the diagnostic procedures, we will backup a few steps, 
to the start of the analysis. A commonly used diagnostic plot for DE 
analysis is to examine the mean-variance relationship and plot the 
biological coefficient of variation (BCV) against the mean abundance, 
on a log2 scale. BCV is the square root of the tagwise estimated 
dispersion [12]. This is a scatterplot, where one point represents a 
single gene. When created using the R package, cranvas, this plot is 
interactive: mousing over the plot, or clicking, will create an event 
which can be used to induce changes in other charts. An interaction 
plot is linked to the scatter plot for this experiment, because it is ideal 
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Figure 1: Representation of counts of genes found to be signi_cant for iron 
condition for treatments EV and PRA, based on two di_erent approaches: 
(left) mosaic plot, and (right) conventional Venn diagrams of signi_cant 
genes.
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Figure 2: Diagram illustrating how estimation of the variance can a_ect 
the interpretation of the mean di_erence, under di_erent scenarios. (a) 
Conventional situation, where each condition (M, N) has the same small 
variance, mean di_erence is viewed as signi_cant, because it is big relative 
to the small variance. (b) One condition (N) has higher variance than the 
other, ignoring the di_erence, and pooling the variances would increase the 
length of the ruler upon which the di_erence is gauged, to the extent that 
the di_erence is not considered to be signi_cant. (c) Addition of an extra 
treatment level (B), that has larger variance, but this has no e_ect because 
each level of the treatments (A, B) is handled as separate samples { di_
erence is still seen as signi_cant. (d) Variances across treatments (A, B) are 
pooled, which increases the length of the ruler upon which the di_erence is 
measured, resulting in no signi_cant di_erence.
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for examining the results of the 2X2 factor experiment. For a 2X2 
experiment, the interaction plot contains points for each gene for each 
treatment and replicate. There are three replicates for each treatment, 
except for one treatment which only has two. This gives 11 data points 
for each gene. The horizontal axis is the iron condition, and the vertical 
axis displays log2 count per million. Color and symbol indicate VIGS 
treatment. A line connects the means for the treatments. Examining 
this line indicates important aspects of the results, with the most 
interesting being whether the treatments are responding differently to 
the iron condition, as would be indicated by different slopes of these 
lines.

Figure 3 illustrates the scatter plot linked with an interaction plot of 
the raw data, and a plot of the estimated means generated by the GLM. 
To begin, the pattern in the BCV vs abundance plot should be examined. 
It is expected that as abundance increases dispersion decreases. For 
genes with small mean abundance, dispersion varies a lot. There is a 
curious string of points with high abundance, which cluster apart from 
the others as having unusually high dispersion (explored using linked 
brushing in Figure 4). From later investigation, this cluster contains 
genes that come from repeated elements of the genome, and in regions 
not of interest, so they were removed in later analysis.

In Figure 3, in the BCV vs abundance scatterplots, yellow indicates 
the gene that is the focus of the user’s interaction-the user has actively 
selected this point to investigate. When the point is selected, the 
interaction plot for the respective gene is shown. In the top row, a gene 
(call this A) that has a high overall mean abundance, but relatively 
low dispersion is highlighted, and in the bottom row a gene (call this 
B) with similar mean, but relatively higher dispersion is highlighted. 
The gene with relatively low dispersion would be considered the more 
interesting gene, and should emerge from the hypothesis testing as 
more significantly expressed than the other. The difference in dispersion 
is visible in the interaction plots. Gene B on RPA treatment has one 
replicate with an unusually high value on the iron sufficient condition, 
which likely resulted in the high dispersion value. The plot of the model 
estimates from GLM in edgeR on the right shows what the model sees 
when expression is fitted to the treatment levels. The model estimates 
don’t seem to match the raw data. The estimated mean for RPA (green) 
is pulled towards the replicate with the extremely high value, which 
suggests something strange is happening with the model. In Figure 
4, two genes from the strange cluster are highlighted, and from the 
interaction plots, we can see the pattern of each is almost identical, 
supporting the conclusion that they are from repeated elements of the 
genome where counting of reads would be problematic.

Figures 5-7 illustrate the effect of the shrinkage parameter (prior.df) 
on the dispersion calculation, and hence, the p-value and the significance 
of genes. Two different shrinkage parameters (1 and 10) are chosen. 
Here, we have chosen a very small value (0), and the default value (10). 
The top two plots on the left in each figure provide a comparison of the 
two p-values that would result from the two different shrinkage values, 
on full scale and zoomed in to small values. If the shrinkage parameter 
did not matter, the points would lie very close to an X=Y line. We can 

see that there is a positive linear association, a low p-value for initial 
shrinkage corresponds to a low p-value for another, but the spread 
is much larger than we might expect. This says that the p-values are 
changing substantially in relation to shrinkage, and popping in and out 
of significance. Three different genes are highlighted. In Figure 5a, gene 
that has low initial p-value that increases for the converged shrinkage 
value, so that it would initially be a candidate for an interesting gene, but 
is dropped from the list in the final analysis. The next two plots shows 
the BCV for the two different shrinkage values, and it can be seen that 
the BCV initially is close to 0, and is increased to 0.27 with the change 
in shrinkage. The last two plots show the raw data interaction plot (left), 
and the model estimates with dispersion shown as bars. Shrinkage with 
prior.df=10 pulls the tagwise dispersion towards the trended dispersion 
value, effectively reducing significance of this gene. Figure 6 shows a 
gene with the opposite pattern, one that initially has large dispersion, 
but this is reduced substantially to increase the significance from 0.06 
to about 0.005. Figure 7 shows a gene for which there is little effect 
of the shrinkage. It is a gene with a very small p-value, which doesn’t 
change much.

The interactive graphics demonstrated here enable the analyst to 
investigate the effects of the choices that they make in the data pipeline. 
Particularly, the effect on significance needs to be understood to ensure 
reliable results in these large high-throughput studies.

Lineup inference 

RNA-Seq data is an example of high-dimension low sample 
size (HDLSS) data. In this type of data, the high-dimensionality can 
dwarf any signal in the data. Chowdhury et al. [23] examined whether 
differences between groups are visible in the presence of many 
noise variables. This is equivalent to the multiple testing involved in 
identifying gene expression differences in RNA-seq data analysis. 
Chowdhury et al. [23] used the lineup protocol described in Buja et 
al. [21]. The lineup protocol is a very new approach to test discoveries 
made using visualization while data mining.

Figure 8 shows a lineup constructed on the 2X2 experiment 
described in this paper. There are 20 interaction plots laid out in a grid. 
One of the plots displays actual data and the others show what might be 
seen when data is randomized (null plots). The actual data plot shows 
the most significantly expressed gene from a test of whether RPA (green) 
silencing affects expression of the gene depending on iron condition, 
but EV (orange) does not. This corresponds to a pattern where the slope 
of the green line is steep, and the spread of the green points is small. 
The null plots are generated by permuting the experimental design 
(Table 3). The full analysis is conducted on this permuted data, and the 
most significant gene is recorded and plotted. The process is repeated 
19 times to give the 19 null plots. These represent the most extreme 
patterns we might see if there is no treatment effect. An independent 
judge is employed to examine the lineup and choose the plot with 
the most structure. If the observed data is selected by the judge, this 
is equivalent to rejecting a null hypothesis. The null hypothesis for 
this lineup is “RPA silencing does not affect gene expression”, that is, 
there are NO genes on the RPA treated plants that respond differently 
depending on iron condition. If the null hypothesis is rejected, it is also 
saying that there is no structure in the data.

Why is this important? In RNA-Seq analysis, a substantial 
number of the genes will appear to be significant simply due to the 
massive multiple testing. Even with false discovery rate adjustments, 
some genes may still have p-values that would consider being small. 
With small p-values, it is so tempting to believe that the genes are 

Table 2: Dispersion for all possible combinations of factor levels.Generally, larger 
dispersion is observed with treatment RPA, treatment RPA under condition iron 
insufficient has largest dispersion.

Iron Condition
Treatment     I                       S Pooled
EA
RPA

0.114             0.042
0.176             0.108

0.076
0.151

Pooled 0.174             0.087 0.095



Citation: Yin T, Majumder M, Chowdhury NR, Cook D, Shoemaker R, et al. (2013) Visual Mining Methods for RNA-Seq Data: Data Structure, 
Dispersion Estimation and Significance Testing. J Data Mining Genomics Proteomics 4: 139. doi:10.4172/2153-0602.1000139

Page 5 of 9

Volume 4 • Issue 4 • 1000139J Data Mining Genomics Proteomics
ISSN: 2153-0602 JDMGP, an open access journal

Bioinformatics for High-throughput Sequencing

(a)

���
���

0

5

10

15

insufficient sufficient
Fe

lo
g2

(n
or

m
al

iz
ed

 c
pm

 +
 1

)
(b)

���
���

com
m

on
trended
tagw

ise

0

5

10

15

insufficient sufficient
Fe

lo
g2

(n
or

m
al

iz
ed

 c
pm

 +
 1

)

(c)

(d)

�

�

�

�
�
�

0

5

10

15

insufficient sufficient
Fe

lo
g2

(n
or

m
al

iz
ed

 c
pm

 +
 1

)

(e)

���

���

com
m

on
trended

tagw
ise

0

5

10

15

insufficient sufficient
Fe

lo
g2

(n
or

m
al

iz
ed

 c
pm

 +
 1

)
(f)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0                             5                            10                           15

log2(normalized cpm + 1)

B
C

V

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0                             5                            10                           15

log2(normalized cpm + 1)

B
C

V

Figure 3: Illustration of linking plots to examine mean-variance relationships and gene expression. The left plots (a, d) show the mean-variance (BCV vs log2 of count 
per million (CPM)). One point represents one gene. The yellow point indicates highlighting of a point by identi_cation using mouse action, which immediately displays 
this gene in the two other plots on the right. The middle column shows interaction plots of the raw data (b, e) and the right column shows the _tted value from the model 
(c, f). The two genes that are highlighted have similar overall mean abundance but di_erent dispersion, one low (top) and one high (bottom). In the interaction plots, the 
green color represents RPA and the orange color represents EV.

(a)

�
�

����

0

5

10

15

insufficient sufficient
Fe

lo
g2

(n
or

m
al

iz
ed

 c
pm

 +
 1

)

(b)

���

���

com
m

on
trended
tagw

ise

0

5

10

15

insufficient sufficient
Fe

lo
g2

(n
or

m
al

iz
ed

 c
pm

 +
 1

)

(c)

(d)

�
�

�
���

0

5

10

15

insufficient sufficient
Fe

lo
g2

(n
or

m
al

iz
ed

 c
pm

 +
 1

)

(e)

���

���

com
m

on
trended
tagw

ise

0

5

10

15

insufficient sufficient
Fe

lo
g2

(n
or

m
al

iz
ed

 c
pm

 +
 1

)

(f)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0                             5                            10                           15

0                             5                            10                           15

log2(normalized cpm + 1)

log2(normalized cpm + 1)

B
C

V
B

C
V

Figure 4: Illustration of linking plots to examine mean-variance relationships and gene expression for genes in a strange cluster. Two points are identi_ed in a group of 
outliers. Clearly they all have similar expression patterns, so do other points in that group, where one replicate has an unusually low expression value. Later investigation 
revealed that these genes are repetitive elements of the soybean genome, and this may have caused some counting problems. In the interaction plots, the green color 
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Figure 5: Exploring the e_ect of shrinkage parameter (prior.df) choice on the di_erential expression of EV (orange) when gene signi_cantly di_erentially expressed 
only with prior.df = 1. Two di_erent shrinkage values (prior.df = 1 and prior.df = 10) are chosen, and compared using the change in p-values (5(a)) and zoomed view 
(5(b)), BCV (5(c)) and zoomed view (5(d)). Yellow indicates gene under investigation, chosen by mouse action on the plot. The interaction plot (5(e)) for this gene, and 
the model estimates are shown (5(f)). Bars in the model estimates plot (5(f)) show the changes in di_erent dispersion estimates, for tagwise estimates, number means 
prior.df. The gene investigated here becomes less signi_cant from the _rst shrinkage value (1) to the second (10), as seen that it has a smaller p-value on the horizontal 
axis (< 0:05) and higher on the vertical axis (> 0:12) (5(b)), and the increase in tagwise dispersion (5(f)) with prior.df = 10. It makes sense because the variation in 
RPA (green) is larger than for EV (orange) (5(d) and 5(e)), and trended dispersion is bigger. EV should really be considered more signi_cantly expressed. Shrinkage 
increases the inuence of RPA dispersion on the EV dispersion estimate.
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Figure 6: Exploring how the shrinkage parameter (prior.df) choice a_ects the di_erential expression of EV (orange) when gene signi_cantly di_erentially expressed only 
with prior.df = 10. Two di_erent shrinkage values (prior.df = 1 and prior.df = 10) are chosen, and compared using the change in p-values (6(a)) and zoomed view (6(b)), 
BCV (6(c)) and zoomed view (6(d)). Yellow indicates gene under investigation, chosen by mouse action on the plot. The interaction plot (6(e)) for this gene, and the 
model estimates are shown (6(f)). Bars in the model estimates plot (6(f)) show the changes in di_erent dispersion estimates, for tagwise estimates, number means prior.
df. The gene investigated here becomes more signi_cant from the _rst shrinkage value (1) to the second (10), as seen that it has a larger p-value on the horizontal axis 
(> 0:05) and smaller on the vertical axis (< 0:02) (6(b)), and the decrease in tagwise dispersion (6(f)) with prior.df = 10. It makes sense because the smoothed trended 
dispersion for this gene is smaller (6(f)) than observed raw dispersion (6(e)). Shrinkage increases the inuence of the global smoothed dispersion on the EV dispersion 
estimate.
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Figure 7: Exploring how the shrinkage parameter (prior.df) choice a_ects the di_erential expression of EV (orange) when gene signi_cantly di_erentially expressed with 
both prior.df = 1 and 10. Two di_erent shrinkage values(prior.df = 1 and prior.df = 10) are chosen, and compared using the change in p- values (7(a)) and zoomed view 
(7(b)), BCV (7(c)) and zoomed view (7(d)). Yellow indicates gene under investigation, chosen by mouse action on the plot. The interaction plot (7(e)) for this gene, and 
the model estimates are shown (7(f)). Bars in the model estimates plot (7(f)) show the changes in di_erent dispersion estimates, for tagwise estimates, number means 
prior.df. Signi_cance of this gene is e_ectively unchanged by shrinkage, as seen that the p-value is similar in value for both shrinkage values, and observed dispersion 
is small for both RPA (green) and EV (orange) (7(e)). So this is a gene that is not a_ected much by the choice of shrinkage.
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The position of the observed data plot in the lineup is the solution of this expression / .−4 22 2 3
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significantly responding to the treatment. Plots of the data give 
additional information that portrays a different aspect of the response, 
the effect size, how strongly the genes respond to the treatment. Two 
genes that have very similar p-values may have entirely different 
expression differences. The lineup enables an assessment of this effect 
size, and closely approximates fold change, while taking p-value into 
account. It is important to note that although the lineup results are 
significant, there is nothing biologically significant about the gene that 
was tested. It simply happened to be the gene that had the smallest 
p-value in the original analysis. The lineup results say that there really 
is some structure in the data, based on the assessment that observers 
can pick the actual data plot as different from the other plots. There is 
something in this gene’s expression pattern that is more than would 
be expected by chance. In the original analysis of this data [13], about 
2000 genes were found to be significantly expressed, in terms of some 
factor in the design.

For this experiment, the results of the hypothesis testing are very 
strong. The p-values for testing of the presence of an interaction effect 
(as in the lineup shown), and the treatment effect are 0.

Discussion 
The way dispersion is estimated substantially affects the significance 

testing in RNA-Seq data. The effect of heterogeneity between treatment 
groups can result in radically different, and possibly contradictory, 
gene lists depending on the way dispersion is estimated. It is historically 
known as Simpson’s paradox [24], and is observed in many other types 
of data analyses, for example, calculating correlations across groups. 
It became famous with the Berkeley admissions controversy, when 
it was alleged that graduate programs were unfairly accepting more 
male applicants. Combining acceptances across colleges meant that 
admission rates for women were much lower than for men, but it was 
dismissed when admission rates in each college showed the reverse 
pattern.

In differential expression analysis, there are multiple sources 
of variation that need to be understood in order to arrive at lists of 
genes to investigate further. In multi-factor studies, a further source of 
different variance is introduced with the factor levels. Understanding 
these different types of variation is greatly assisted by making plots 
of data. It is important to make appropriate plots, which for a 2X2 
factor experiment are the classical interaction plots. Using interactive 
graphics helps to cover the seemingly high hurdle of massive amounts 
of data, while still incorporating these important plots into the analysis. 
The interactive graphics demonstrated here enable the analyst to 
investigate the effects of the choices that they make in the data pipeline. 

In particular, the effect on significance needs to be understood to 
ensure reliable results in these large high-throughput studies. Other 
experimental design may classically use different diagnostic plots, 
which can be easily substituted for the interaction plots and linked 
accordingly. Streamlining the interactive graphics, so that they work 
more smoothly, and for broader types of investigation is planned for 
the future.

The lineup protocol, available as part of visual inference, helped 
to reassure us that for the experiment being investigated, that there 
was structure in the data with both treatments and conditions altering 
gene expression. It is quite possible with these large experiments that 
patterns found are purely due to random variation, and this new 
test enables this to be examined in a rigorous manner. While this is 
not a substitute for classical inference, visual inference enables the 
assessment of the effect size in the data, and a sampling of random 
patterns that one might find in data.
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