Building resilience in students and athletes by reconditioning the fear response

Marc Schoen
UCLA Geffen School of Medicine, USA

The fear response is often at the heart of what undermines resiliency. We have learned from studying trauma that the limbic fear reaction becomes overly sensitized and exaggerated at the expense of the cortical regions of the brain. Much research and clinical work have focused on empowering these cortical regions, via cognitive interventions, to improve their ability to turn down the volume of limbic input. The cognitive approach can be considered a Top-Down method of boosting resilience. In some cases however, the fear reaction is so magnified that traditional cognitive methods are unable to gain traction or require extended training before it becomes operational. It is possible however, to boost resilience in a more direct manner. In this approach, the limbic fear response is targeted directly. With classical conditioning and hypnosis, the fear reaction can be expediently reconditioned and attenuated, resulting in significant and rapid improvements in resilience. This method has been effectively used with students and athletes in improving their performance and response to stress, competition, and pressure conditions.

Oxidative stress in patients with anxiety disorder

Mariina Ceprnja
University Hospital Dubrava, Croatia

Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants and/or a depletion of antioxidants. The brain consumes a large amount of oxygen, and has high lipid content and transition metals, so is at high risk for oxidative damage. Oxidative vulnerability of the brain has led some authors to suggest that oxidative damage may be a probable pathogenic factor for some neurological diseases. So many studies have examined oxidative damage in the brain that causes nervous system impairment. Recent study data support the role of oxidative stress in diverse psychiatric disorders. Oxidative stress has been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal anxiety and also on a possible causal relationship between cellular oxidative stress and emotional stress. Oxidative stress has been associated also with several diseases which are specific for nervous system impairment, such as neurodegenerative and neuropsychiatric diseases, schizophrenia and major depressive disorder. These data not only suggest that oxidative mechanisms may form unifying common pathogenic pathways in psychiatric disorders, but also introduce new targets for the development of therapeutic interventions.