Enhanced physical and cellular activities of polycaprolactone/alginate/PEO cell-laden hierarchical scaffolds for tissue engineering applications

Hyeongjin Lee, SeungHyun Ahn, Hojun Jeon, YongBak Kim, MyungGu Yeo, Minseong Kim, KyoungHo Lee, Gi-Hoon Yang, Jae Yoon Lee, YoungWon Koo, MinJae Kim and GeunHyung Kim
SungKyunKwan University, South Korea

Biomedical scaffolds have been widely investigated because they are essential for support and promotion of cell adhesion, proliferation and differentiation in three-dimensional (3D) structures. An ideal scaffold should be highly porous to enable efficient nutrient and oxygen transfer and have a 3D structure that provides optimal micro-environmental conditions for the seeded cells to obtain homogeneous growth after along culture period. In this study, new hierarchical osteoblast-like cell (MG-63)-laden scaffolds consisting of micro-sized struts/inter-layered micro-nanofibres and cell-laden hydrogel struts with mechanically stable and biologically superior properties were introduced. Poly (ethylene oxide) (PEO) was used as a sacrificial component to generate pores within the cell-laden hydrogel struts to attain a homogeneous cell distribution and rapid cell growth in the scaffold interior. The alginate-based cell-laden struts with PEO induced fast/homogeneous cell release, in contrast to nonporous cell-laden struts. Various weight fractions (0.5, 1, 2, 3 and 3.5 wt%) of PEO were used, of which 2 wt% PEO in the cell-laden strut resulted in the most appropriate cell release and enhanced biological activities (cell proliferation and calcium deposition), compared to nonporous cell-laden struts.

Biography
Hyeongjin Lee is pursuing his PhD from 2011 to present in Bio-Mechatronic Engineering, SKKU, South Korea. He worked as a Scientist from 2012-2013 at Biomedical Engineering, Cornell University, USA. He did his MS in 2009-2011 in Mechanical Engineering, from Chosun University, South Korea, and BS from 2005-2009 in Mechanical Engineering from Chosun University, South Korea.

gkimbme@skku.edu