Figure 4: Glyceroneogenesis generates G3P (glycerol-3-phosphate) instead of glucose. Gluconeogenesis (broken arrows) and glyceroneogenesis (more frequently broken arrows) share several steps in common with glycolysis (solid arrows) because most of the reactions are readily reversible (two direction arrows). Three kinase reactions (HK, hexokinase; PFK, phosphofructokinase; and PK, pyruvate kinase) in glycolysis are not reversible and require separate enzymes for gluconeogenesis (PC, pyruvate carboxylase; PEPCK, phosphoenolpyruvate carboxykinase; F1,6-Bpase, fructose-1,6-bisphosphatase; and G6Pase, glucose-6-phosphatase) and glyceroneogenesis (PC, PEPCK). PEP, phosphoenolpyruvate; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde-3-phosphate; OAA, oxaloacetate; TCA, tricarboxylic acid cycle (Krebs cycle) [765].