θ Model Par PM PSD W C Abias APMSE
.02 Nig p .254.0011 .030.0001 .116.0003 .924.0084 .027.0006 .002.0001
    π .379.0023 .066.0002 .254.0007 .911.0090 .059.0014 .010.0002
    θ .049.0008 .032.0003 .107.0012 .950.0069 .029.0008 .003.0001
  Ig p .441.0008 .026.0000 .101.0001 .000.0000 .184.0008 .035.0003
    π .709.0011 .035.0000 .137.0002 .000.0000 .338.0011 .117.0007
    θ .017.0002 .015.0001 .045.0003 1.000.0000 .005.0001 .000.0000
.20 Nig p .259.0012 .034.0001 .129.0003 .917.0087 .029.0007 .003.0001
    π .373.0019 .055.0001 .213.0006 .905.0093 .049.0012 .007.0002
    θ .206.0019 .055.0002 .210.0006 .924.0084 .048.0011 .007.0001
  Ig p .489.0010 .029.0000 .110.0002 .000.0000 .232.0010 .056.0005
    π .648.0012 .035.0000 .134.0001 .000.0000 .277.0012 .080.0006
    θ .061.0009 .035.0003 .121.0011 .064.0077 .139.0009 .021.0002

The nonignorable (NIG) selection model holds, and the ignorable (IG) selection model is fit. PM, PSD and W are the posterior mean, posterior standard deviation and width of the 95% credible interval averaged over the 1000 simulations; C is the probability content of 95% credible interval, Abias is the average over the 1000 simulations of the absolute deviations of the estimate from the true value. APMSE is the average over the1000 simulations of the square of the deviations of the posterior mean from the true value plus posterior variance. Here the notation ab means that a is the average and b is the standard error. True p = .257, true p =.371 and true ? = .02, .20.
Table 3: Simulation study to compare posterior means, posterior standard deviations and 95% credible intervals of the parameters p, ?and ? by model and the true value of ?