Variable ρ Parameter Bias MCMC efficiency MCMC bias
GS
a0=0.0
Efficiency
GS
a0=0.0
bias
GS
a0=â0.0
Efficiency
GS a0=â0.0
Bias
GS
a0=0.50
Efficiency
GS
a0=0.50
Bias
GS
a0=0.95
efficiency
GS
a0=0.95
 Intercept 0.25 β0  0.0018 2.1771 0.0015 0.9713 0.0011 0.9548 0.0003  0.9263 0.0007  0.7511
 Time 0.25 β1 0.0015 4.2531 0.0019 0.9910 0.0015 0.9625 0.0013 0.9226 0.0004  0.8162
Age 0.25 β2 0.0052 3.6621 0.0008 1.0007 0.0013 0.9162 0.0003 0.8541 0.0000  0.7381
Center 0.25 β3 0.0031 4.1954 0.0037 0.9568 0.0025 0.9417 0.0011 0.9771 0.0007 0.8572
Treat 0.25 β4 0.0028 2.3718 0.0021 0.9936 0.0017 0.8611 0.0009  0.8819 0.0003  0.8338
Visit  Group 0.25 β5 -0.0033 3.6931 0.0013 1.0125 0.0009 0.9352 0.0008  0.8926 0.0011  0.8811
Intercept 0.50 β0 0.0082 1.6416 0.0005 1.0173 0.0003 0.9812 0.0001  0.8115 0.0004  0.7739
 Time 0.50 β1 0.0071 1.4358 0.0012 0.9972 0.0012  0.8714 0.0009  0.8909 0.0000  0.8162
Age 0.50 β2 -0.0018 1.8871 0.0007 0.9615 0.0012 0.8759 0.0000  0.7791 0.0005 0.7150
Center 0.50 β3 -0.0021 2.2701 0.0009 0.9926 0.0004 0.9157 0.0008  0.8183 0.0001  0.7962
Treat 0.50 β4  0.0033 1.3277 0.0013 0.9732 0.0010  0.9456 0.0010 0.8317 0.0006  0.8110
Visit  Group 0.50 β5 -0.0041 2.7140 0.0011 1.1704 0.0011  0.9627 0.0007  0.9122 0.0003  0.7155
Intercept 0.75 β0 0.0015 3.1147 0.0009 1.0063 0.0011 0.8931 0.0004 0.8102 0.0009  0.7107
 Time 0.75 β1 0.0027 3.8031 0.0016  1.126 0.0010 0.8825 0.0010  0.8339 0.0006  0.7263
Age 0.75 β2 0.0017 2.5731 0.0021 1.0286 0.0023  0.9345 0.0006  0.8513 0.0015  0.6610
Center 0.75 β3 -0.0019 5.1703 0.0024 1.1351 0.0019 0.9132 0.0017  0.7959 0.0008  0.7289
Treat 0.75 β4 -0.0014 2.3319 0.0009 0.9938 0.0012  0.8627 0.0005  0.8208 0.0002 0.7338
Visit  Group 0.75 β5 0.0026 3.4265 0.0014 1.0346 0.0016 0.8236 0.0009 0.7107 0.0005  0.6619
Table 3: Estimated bias and relative efficiency by using Gibbs sampler GS and Bayesian MCMC for the real data.