CCA MI LLMI LCMI
Missing Mechanism Bias ASE Bias ASE Bias ASE Bias ASE
MCAR       0.16 0.80 0.07  0.52 0.02 0.54 0.03 0.47 
MAR(X2)   0.18 0.93 0.07 0.58  0.05 0.68 0.02 0.54
MAR(Y)     0.19 0.93   0.08 0.54 0.01 0.57 0.03 0.49
MAR(Y,X2)  0.17 0.92 0.04 0.54 0.03 0.60 0.01 0.50 
MCAR = Missing completely at random
MAR(X2) = Missing at random that depends on x2 (eg. age of the person)
MAR(Y) = Missing at random that depends on outcome y (eg. HbA1c)
MAR(X2,Y) = Missing at random that depends on outcome Y (eg. HbA1c) and X2 (eg. Age)
CCA= Complete case analysis
MI = Multiple imputation
LLMI = Log-linear multiple imputation
LCMI = Latent class multiple imputation with three classes
Table 4: Bias in the mean log-odds ratio (Bias=estimated mean – 0.69) and asymptotic standard error (ASE) estimates of a logistic regression model from a simulation study with 50% missing race data (n=200, true log odds ratio=0.69).