Sample Size
(n)
  Coverage Percentage
Method (I) Method (II)

m=5

m=10

m=30

m=50

m=100

0.1

10

0.1267

0.6512

0.7906

0.9030

0.9205

0.9427

25

0.2493

0.6482

0.7962

0.9031

0.9247

0.9428

50

0.3820

0.6514

0.7939

0.9051

0.9212

0.9427

100

0.5309

0.6466

0.8005

0.9096

0.9294

0.9480

0.3

10

0.4726

0.6664

0.8187

0.9296

0.9462

0.9650

25

0.6820

0.6638

0.8262

0.9299

0.9446

0.9575

50

0.7907

0.6699

0.8231

0.9330

0.9461

0.9590

100

0.8697

0.6761

0.8300

0.9329

0.9475

0.9611

0.6

10

0.7256

0.6683

0.8242

0.9351

0.9445

0.9560

25

0.8427

0.6690

0.8270

0.9316

0.9431

0.9514

50

0.8977

0.6684

0.8323

0.9354

0.9434

0.9506

100

0.9257

0.6742

0.8360

0.9351

0.9436

0.9535

1

10

0.8166

0.6468

0.7991

0.9132

0.9263

0.9447

25

0.8921

0.6538

0.8020

0.9146

0.9243

0.9388

50

0.9209

0.6576

0.8185

0.9175

0.9304

0.9434

100

0.9395

0.6630

0.8197

0.9200

0.9342

0.9461

3

10

0.8636

0.7420

0.8594

0.9215

0.9263

0.9383

25

0.9206

0.6650

0.8083

0.9232

0.9328

0.9485

50

0.9332

0.6445

0.7941

0.9000

0.9122

0.9318

100

0.9458

0.6498

0.8033

0.9005

0.9143

0.9331

Table 1: Coverage Percentage of 95% confidence Intervals from central limit theorem and generalized variable methods for a Uniform distribution.