Sample Size
(n)
  Coverage Percentage
Method (I) Method (II)

m=5

m=10

m=30

m=50

m=100

0.1

10

0.1823

0.6693

0.8135

0.9357

0.9639

0.9816

25

0.3452

0.6649

0.8210

0.9348

0.9618

0.9802

50

0.5051

0.6711

0.8152

0.9403

0.9603

0.9794

100

0.6747

0.6695

0.8230

0.9418

0.9637

0.9818

0.3

10

0.6013

0.6781

0.8442

0.9499

0.9728

0.9832

25

0.8002

0.6829

0.8462

0.9559

0.9706

0.9839

50

0.9001

0.6903

0.8439

0.9566

0.9732

0.9840

100

0.9484

0.6862

0.8413

0.9527

0.9703

0.9804

0.6

10

0.8245

0.6756

0.8381

0.9506

0.9688

0.9784

25

0.9293

0.6892

0.8457

0.9547

0.9654

0.9760

50

0.9646

0.6836

0.8525

0.9524

0.9663

0.9762

100

0.9796

0.6856

0.8457

0.9476

0.9634

0.9733

1

10

0.9009

0.6645

0.8188

0.9389

0.9571

0.9735

25

0.9583

0.6747

0.8328

0.9401

0.9579

0.9705

50

0.9789

0.6828

0.8419

0.9503

0.9626

0.9755

100

0.9864

0.6788

.8338

0.9436

0.9604

0.9738

3

10

0.9400

0.7501

0.8734

0.9391

0.9522

0.9681

25

0.9754

0.6814

0.8314

0.9507

0.9668

0.9800

50

0.9841

0.6608

0.8209

0.9297

0.9521

0.9722

100

0.9870

0.6668

0.8192

0.9287

0.9524

0.9722

Table 2: Coverage Percentage of 99% confidence Intervals from central limit theorem and generalized variable methods for a Uniform distribution.