Anthropomorphic 3D scanner for corporal gross determination in obese population

Lacerda M A¹, Gazziro M ³, Delbem A C B², Lima NetoO², Osti A², Mendonça M², Di Thomazzol², Carvalho L P ², Borghi-Silva A² and Suzuki P⁴

¹Universidade de Sao Paulo, Programa de Pos Graduação Interunidades em Bioengenharia-EESC/IQSC/FMRP-USP, Brazil
²Universidade de Sao Paulo, ICMC, Brazil
³Universidade Federal do ABC, Brazil
⁴Universidade Federal de Sao Carlos, DFISIO, Brazil

This paper presents the research and development of 3D Anthropomorphic Scanner for Corporal Gross determination in Obese Population. Body Circulation is the key system for a good health condition. Through arteries and veins, blood flows freely to sustain all organs working. However, some conditions could put this system in a bad function, for example, the overweight. Obesity has been the focus of several researches and equipment development. A bad assessment could lead to mistakes in treatments and diets. The correct measurement of percentage of corporal gross is an important indicator of obesity and its severity. A Scanner for Corporal Gross Determination has the function of measure the percentage of gross in a human body. That has being made using computational vision technology for a biological assessment. This type of technology will be a key area for Obesity assessment in XXI century.

This paper presents the research and development of the cited Scanner assessing obese individuals. Those have been assessed systematically with different techniques and with the present Scanner. All in all, this study is a thriving new technology to provide best measurements for the growing obese population.

Biography

Lacerda M A is a graduate student in Universidade de Sao Paulo, in Brazil, through the Programa de Pós Graduação Interunidades em Bioengenharia EESC/IQSC/FMRP-USP. He has been working with Technologic applications to Biology and Healthcare through 5 years. He has been served as Research and Development Engineer for Philips, Healthcare division for 4 years and has achieved several advances in equipment dedicated to disease assessment and life support.

michel.usp@gmail.com