To evaluate the role of follicular unit hair transplantation and excimer laser in stable vitiligo

Rohan Anand, Yadav Shri Nivash and Dhepe Niteen
Skin City, India

Introduction: Vitiligo is a disease of unknown cause and many medical and surgical therapeutic methods are used to treat it.

Case Report: We had 2 patients presenting at the Skin City OPD, first was 11 years old male with complaints of three white patches with leukotrichia on his scalp for 5 years which were non-progressive. One of the patch was on right side lock and other two patches were over frontal forelock extending to mid scalp of size. The second patient was a 28 year old male with similar complaints since 20 years over the occipital area extending to the nape of the neck. We advised both them follicular unit hair grafting and subsequent excimer laser treatment.

Objective: Our purpose was to evaluate the effectiveness of follicular unit hair grafting and excimer laser in a patient with vitiligo which was not responding to any other treatment.

Method: Around 600 follicular units were grafted into vitiliginous areas of the first patient and around 150 follicular units for the second one. After 3 weeks of grafting weekly excimer laser treatment was started. The response in the form of spreading pigmentation was evaluated periodically.

Results: Perifollicular repigmentation around the grafted hair was observed after 3rd sitting and more than 90% repigmentation after 11th sitting of excimer treatment.

Conclusion: Follicular unit hair grafting and subsequent excimer treatments appear to be an effective method for treating stable vitiligo with leukotrichia especially on hairy parts of the skin.

Development of a novel topical treatment for onychomycosis

James J Brennan
Institute of Technology, Ireland

The Institute of Technology, Sligo (ITS) has developed a novel, patented technology for the topical treatment of onychomycosis. It is a highly efficacious therapeutic as evidenced through pre-clinical studies which contains a proprietary, synthetic antimicrobial ingredient that is slowly released, penetrating the nail surface to kill the fungus throughout the nail plate and bed, eradicating the fungal infection. The antifungal activity in ITS’s technology differs from current solutions in several ways. First, the antifungal activity has a very small molecular weight and size that allows it to easily penetrate through the nail to kill the fungal infection underneath. Second, the antimicrobial is continuously released over a period of time to more effectively kill the fungal infection. Finally, the technology is a very broad spectrum antimicrobial that has successfully killed all microorganisms tested to date. The technology can be formulated into a broad range of forms including gels, lacquers and thin film delivery systems enabling many standard and novel methods of application.