Bacterial infections and emerging resistance in renal transplant recipients

Inam Danish Khan
Armed Forces Medical College, India

Background: Renal transplantation is frequently complicated by bacterial infections in the scenario of immunosuppression, altered metabolism and interventions resulting in prolonged morbidity. Subdued clinical presentation, antimicrobial resistance and toxicity tend to jeopardize the outcome of transplantation. This study conducted at tertiary care apex transplant centre highlights colonization, clinical infection and antimicrobial resistance patterns in Renal Transplant Recipients (RTR) in comparison with nephrology ward in-patients (NIP).

Methods: Infection and antimicrobial resistance patterns in 65 RTR in comparison with 80 NIP were studied. Clinico demographic and transplant parameters were noted. Infection screening in the post-transplant period along with antimicrobial susceptibility were used to analyze data in a post-transplant time frame.

Results: Culture positivity timeline was dominated by post-surgical infections in the first week post-transplant. Urinary infections followed by blood stream infections were noted. Infection profile included simultaneous poly microbial, prolonged and widespread infections. Multiresistant organisms producing beta lactamases and extended spectrum beta lactamases were isolated.

Conclusion: Transplant recipients remain prone to bacterial infections with multiresistant organisms which may persist due to immunosuppression, altered metabolism and toxicity and further contribute to nosocomial hazard. Infection control may be strengthened at avoidance of donor derived infections, surgical complications, epidemiologic exposures, antimicrobial prophylaxis and anti-infection engineering. Antimicrobial stewardship, outbreak and epidemic preparedness should be ensured.

titan_afmc@yahoo.com

Analysis of type IV pilus biogenesis genes between Neisseria meningitidis, Neisseria Gonorrhoea, Pseudomonas aeruginosa and Vibrio cholerae

Saeed Ahmed1, Ijaz Ahmad1, Zia ur-rehman1, Shahzad Akbar khan2 and Ayub Jadoon3
1Huazhong Agriculture University Wuhan, China
2University of Poonch, Pakistan
3Hazara University, Pakistan

Type IV pili are long, thin and flexible filaments which play an important role in bacterial pathogenesis. In current study, structural and sequences similarities of type IV pilus proteins and their associated proteins were analysed in Pseudomonas aeruginosa, Vibrio cholerae, Neisseria meningitidis and Neisseria gonorrhoeae. P. aeruginosa and the pathogenic Neisseria species possess pil-genes for structural and assembly proteins of type IV pili. In opposite to P. aeruginosa and Neisseria, V. cholerae expresses toxin-co-regulated pili (tcp). In V. cholerae typical type IV pil genes are often pseudogenes. The major pilin subunit of P. aeruginosa and Neisseria contains a short signal peptide region whereas pilin of V. cholera lacks this type of signal peptide. Pre-pilins are cleaved by signal sequence peptidases which are similar in all the three bacterial species. The secretin PilQ of P. aeruginosa and pathogenic Neisseria are more similar as compared to the secretin TcpC in V. cholerae. A set of assembly proteins denoted PilM, PilN, PilO and PilP show homology between Neisseria and P. aeruginosa. In V. cholerae, these proteins have functional counterparts denoted TcpD, TcpR and TcpS. The pilus retraction and assembly ATPases, PilT, PilU and PilF/ PilI are homologous in P. aeruginosa and Neisseria whereas V. cholerae possesses only one ATPase called TcpT. In this work the type IV pilus machinery of P. aeruginosa shows high resemblance with the type IV pilus machinery of pathogenic Neisseria whereas the pilus assembly machinery in V. cholera is different. Finally, the role of type IV pilus biogenesis machinery of P. aeruginosa V. cholerae, and Neisseria is summarized.
saah6848@yahoo.com