

5th International Conference and Exhibition on

Analytical & Bioanalytical Techniques

August 18-20, 2014 DoubleTree by Hilton Beijing, China

Utilization of LC for the physicochemical and thermodynamic characterization of forming cilostazol inclusion complexes with $\beta\text{-CD}$ and DM- $\beta\text{-CD}$

Jianhua Wang, Xiaozhong Wang and **Chenghong Li** Chong Qing Academy of Animal Sciences, China

In this presentation, the interaction between cilostazol and two different cyclodextrins (β -CD and DM- β -CD) is studied by using LC. The capacity factors (k) of cilostazol were monitored in the presence of increasing concentrations of β -CD or DM- β -CD from the reduction of the retention time (tR). It was observed that cilostazol forms a 1:1 inclusion complex with β -cyclodextrin (β -CD) and dimethyl- β -cyclodextrin (DM- β -CD) at 25°C, 37°C and 45°C. The interaction of cilostazol with DM- β -CD was more efficient and the highest the formation constant (K) was found for DM- β -CD (23.82M-1) at 25°C. Moreover, the values of K decreased as the system temperature increased. To obtain the information on the mechanism of cilostazol affinity for β -CD and DM- β -CD, the thermodynamic parameters of the complexation (Δ G, Δ H, and Δ S) were studied. Finally, a comparison of the K values obtained for the two different cyclodextrins revealed that the K values of the complexation are dependent upon the structure of the host molecule. The change in the thermodynamic parameters suggested that the complexation could proceed spontaneously (Δ G<0) along with the releasing of heat (Δ H<0) and the decrease of entropy (Δ S<0).

cqtaller@hotmail.com