The role of oxide catalysts in processing of hydrocarbon raw materials to commercial products

Yergaziyeva G E1, Dossumov K2, Telbaeva M1, Myltykbayeva L K1 and Tairabekova S1

1Institute for Problem of Combustion, Kazakhstan
2Al-Farabi Kazakh National University, Kazakhstan

As we know, the most of chemical products produced by industry are manufactured by catalytic methods in presence of catalysts. A wide variety of applicable catalysts have a special role to be used as oxide catalysts. In this report examined low-percentage catalysts on based of transition metal oxides for processes – Dry Reforming (DRM) and Partial Oxidation of Methane (POM) to synthesis gas, the conversion of bioethanol to ethylene and air purification from impurities o-xylene. The investigation of DRM on NiCuNdMo/Al2O3HZSM-5 catalyst is shown at the optimal process condition: CO2/CH4=1, T=850 °C, W=3600 h-1, concentration of hydrogen-48.9 vol.%, carbon monoxide 50.9 vol.% in the reaction products, conversion of methane-92.6% and carbon dioxide-93.2%. In the process of POM on 5% NiLa/γ-Al2O3 catalysts at 750°C obtained synthesis gas with selectivity of H2=43 and CO=73% were used. The catalysts 6% CeLa/γ-Al2O3 was developed for conversion of bioethanol. At 400°C and W=6000 h-1, the concentration of ethylene in the products increase to 98 vol.%, conversion of ethanol 100%. The 7% CuMnCe/γ-Al2O3 catalyst was developed for purification of the waste gas from O-xylene. At 300°C, concentration of O-xylene=0.6 g/m3 and W=3000 h-1, conversion of O-xylene increased to100%. The investigation of catalysts by physical-chemical methods are shown that the modified of oxide catalyst of rare earth elements come to increasing dispersity and formation of nanosize active phase (2-5 nm), which increase its activity, also stability of catalysts to coke formation.

Biography

Yergaziyeva G E is a student from Institute for Problem of Combustion, Kazakhstan.

Notes: