

World Congress on Infectious Diseases

August 10-12, 2015 London, UK

Lipid-based nanoformulations of antimicrobial peptides to treat bacterial infectious diseases

Matougui Nada¹, Groo Anne-Claire¹, Umerska Anita¹, Hakansson Joakim², Joly-Guillou Marie-Laure³ and Saulnier Patrick^{1,3} ¹Inserm U1066 (Micro et Nanomedecines biomimétiques), Angers, France

²SP Technical Research Institute of Sweden, Sweden

³Centre Hospitalier Universitaire (CHU), Angers, France

The rapid increase in drug-resistant infections presents an acute problem that continues to challenge the healthcare sector, generating interest in novel antimicrobial strategies. Antimicrobial peptides (AMPs) have a high potential as new therapeutics against infectious diseases as they are less prone to induce resistance due to their fast and non-specific mechanism of action. The new peptides included in the study are well-defined AMPs, established to have an antimicrobial effect and an acceptable safety profile. The aim of this work is to explore the potential of lipid nanocapsules (LNCs) for AMP delivery, and especially its ability to protect the peptide against degradation while at the same time maintain proper drug activity. The LNCs are described as an oily core composed of medium chain triglycerides, and surrounded by a surfactant shell made of lecithin and PEGylated surfactants. Their lipidic cores are not favourable as they stand to encapsulate hydrophilic molecules. To promote the peptide loading, the incorporation of the cationic peptides in the shell of the LNCs was envisaged. Two strategies are tested: adsorption of the AMPs on the surface of LNCs by incubation under magnetic stirring or incorporation of charged linkers to the formulation of LNCs. The incubation performed at different conditions shows a good association of the sensitive strains. The results show a preservation of the antibacterial activity of the native peptide and in some cases a decrease of the MIC.

Biography

Matougui Nada is a second year PhD student in biology and health doctorate school at the University of Angers working under the supervision of the professor Patrick Saulnier. Her research is focused on the development of a Lipid-based nanoformulations of antimicrobial peptides to treat bacterial infectious diseases. She is pharmacy graduate from the Medicine University of Algiers, followed by a Master degree in "Technologies Innovantes en Formulation" at University of Angers. She worked as an intern at the "MINT" laboratory on the development of a nanomedicine for glioblastoma therapy.

matougui.nada@gmail.com

Notes: