Isolation of anti-bacterial compounds from *Eremophila glabra* and *Biserrula pelecinus* that reduce methane output in ruminants

Azizah Algreib
The University of Western Australia, Australia

Methane is regarded as one of the most harmful greenhouse gases that contribute to global warming. A major source of methane released into the atmosphere is through enteric fermentation of feeds in ruminants. A preliminary study of various Australian plants has investigated the ability of these plants to inhibit methanogenic bacteria present in sheep and cattle to reduce methane output. Over 300 plants have previously been screened and demonstrated that a range of Australian native and pasture species could be beneficial to livestock production in general. In particular, the Australian native *Eremophila glabra* and the legume *Biserrula pelecinus* were the most potent plants against methanogenic bacteria as they show a marked reduction in rumen methane emissions. My PhD study involves isolation and identification of the bioactive compounds that reduce methane *in vitro* from *Eremophila glabra* and *Biserrula pelecinus*. From this work we have isolated a number of Flavonoids that are active in reducing methane *in vitro* studies to date.

Biography

Azizah Algreib has completed her Master’s Degree in Analytical Chemistry in 2013 at the University of Western Australia. She has started her PhD degree in 2014 at UWA. She works at Qassim University in Saudi Arabia as a Lecturer in Analytical Chemistry.

azizah.algreib@research.uwa.edu.au