Conventional vaccinology Reverse vaccinology VLPs vaccinology References
Essential features
  • Microorganisms can be used
  • In vitro expressed antigens
  • Antigens immunogenic during diseases
  • Animal model essential
 
  • Cultivable and non-cultivable microorganisms
  • All potential candidates are quickly identified
  • Expression and screening important
  • Human immunogenic profile of all candidates
  • Animal models essential
  • Cultivation of microorganisms not necessary
  • All potential candidates are quickly identified including membrane proteins
  • Expression and screening important very quick
  • Humanized vaccines can be made
[80]
Advantages
  • Polysaccharides may be used as antigens
  • Lipopolysaccharides based vaccines are possible
  • Access to more potential candidates
  • Non-cultivable microorganisms can be approached
  • Antigens abundance can be determined
  • Antigens not expressed in vitrocan be identified
  • Any protein can be a candidate
  • Any protein with known cDNA can be approached
  • Large amount of antigens can be produced
  • Membrane proteins can be targeted
[25] [24] [80]
[26]
Disadvantages
  • Long term required for antigen identification
  • Antigen selection is based on too few criteria
  • Safety issues
  • Applicable to cultivable pathogens only
  • Antigens expressed in vitro only
  • Non-protein antigens are not selected
  [26]
Table 2: VLPs their advantages and disadvantages.