Algorithm
No. of attributes
Tree size
Time elapsed in second
Correctly classified instances
Accuracy in %
WTPR
WFPR
WROC
J48
28
375
0.48
11291
95.90
96.5
3.5
0.998
26
401
0.45
11262
95.86
96.4
3.7
0.996
24
386
0.38
11281
95.87
96.3
3.7
0.989
22
386
0.37
11281
95.87
96.3
3.7
0.989
20
223
0.34
11230
95.80
96.3
3.7
0.989
16
153
0.23
11111
94.77
94.7
5.3
0.99
Random tree
28
2160
0.08
11274
95.75
96.2
3.9
0.980
26
2450
0.05
11291
95.90
96.3
3.8
0.982
24
2475
0.09
11255
95.59
96.2
3.9
0.981
22
2915
0.11
11280
95.80
96.2
3.8
0.980
20
1368
0.13
11238
95.45
96.0
4.0
0.981
16
909
0.05
11156
94.75
94.8
5.3
0.981
REP tree
28
373
0.27
11291
95.90
96.3
3.7
0.990
26
354
0.42
11286
95.86
96.3
3.7
0.989
24
352
0.22
11284
95.84
96.2
3.8
0.987
22
352
0.22
11284
95.84
96.2
3.8
0.988
20
178
0.36
11253
95.58
96.1
3.9
0.988
16
109
0.13
11152
94.72
94.3
5.7
0.983
Table 10:
Performances of J48, Random tree, REP tree classification algorithms on decision tree model building to predict under-five children admission to pediatric ward in NEMM Hospital, 2012.