Algorithm No. of attributes Tree size Time elapsed in second Correctly classified instances Accuracy in % WTPR WFPR WROC
J48 28 375 0.48 11291 95.90 96.5 3.5 0.998
26 401 0.45 11262 95.86 96.4 3.7 0.996
24 386 0.38 11281 95.87 96.3 3.7 0.989
22 386 0.37 11281 95.87 96.3 3.7 0.989
20 223 0.34 11230 95.80 96.3 3.7 0.989
16 153 0.23 11111 94.77 94.7 5.3 0.99
Random tree 28 2160 0.08 11274 95.75 96.2 3.9 0.980
26 2450 0.05 11291 95.90 96.3 3.8 0.982
24 2475 0.09 11255 95.59 96.2 3.9 0.981
22 2915 0.11 11280 95.80 96.2 3.8 0.980
20 1368 0.13 11238 95.45 96.0 4.0 0.981
16 909 0.05 11156 94.75 94.8 5.3 0.981
REP tree 28 373 0.27 11291 95.90 96.3 3.7 0.990
26 354 0.42 11286 95.86 96.3 3.7 0.989
24 352 0.22 11284 95.84 96.2 3.8 0.987
22 352 0.22 11284 95.84 96.2 3.8 0.988
20 178 0.36 11253 95.58 96.1 3.9 0.988
16 109 0.13 11152 94.72 94.3 5.7 0.983
Table 10: Performances of J48, Random tree, REP tree classification algorithms on decision tree model building to predict under-five children admission to pediatric ward in NEMM Hospital, 2012.