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Introduction
The PacBio RS platform, a newly emerging third-generation DNA 

sequencer produced by Pacific Biosciences, Inc., is based on a real-
time, single-molecule, nano-nitch technology [1-3]. Besides several 
advantages over earlier generation sequencers, such as no PCR-
amplification, single molecule sequencing, and shorter turn-around 
time, the most distinct feature of PacBio is the very long reads that are 
produced ranging up to ~10 kb for raw reads and ~2.5 kb for the error 
corrected, Circular Consensus Sequence reads (see definition in next 
paragraph) [4]. In contrast, the earlier generation sequencers typically 
generate much shorter reads with median lengths of ~100-200 bp for 
Illumina and ~500 bp for 454 [1,3,5-8].The longer reads produced 
by the PacBio platform is a key progression in the high-throughput 
sequencing field, which is expected to benefit many aspects of genomic 
projects in the near future. For example, assembling a genome with 
highly repetitive DNA, closing gaps in genome assemblies, phasing 
analysis of DNA polymorphisms, discovering rare isoforms of a highly 
conserved gene family, and identification of rare gene alternative 
splicing, which all remain challenging tasks using the shorter reads 
derived from earlier generation sequencers, would benefit from this 
approach [9-11].

Although PacBio’s longer reads provide new power to researchers, 
careful error and Quality Control (QC) of the reads is essential to 
effectively use such power. Regardless of the ~15% error rate reported 
for the raw sub reads of PacBio [1,10], one of the standard outputs 
from the platform is the Circular Consensus Sequence(CCS) read (the 
throughput is ~10-20 k per SMRT cell), which is an error-corrected 
consensus read derived from the multiple alignment consensus of sub 
reads belonging to the same single-molecule circular sequencing [1-
3,5].The Pass number is a unique feature of the PacBio platform when 
forming CCS reads [4]. It represents how many rounds the same single-

molecule is sequenced in a hairpin structure during the PacBio circular 
sequencing procedure [1,2,4]. Since the CCS reads are post error-
corrected, users often optimistically treat them as high quality reads 
without a upstream QC step before the downstream assembly or other 
bioinformatics analysis. In fact, because PacBio RS is a new platform, 
the CCS read QC related questions of the individual CCS reads remains 
largely unanswered even though some studies have addressed the 
accuracy and sequencing bias in a global view of raw reads [12,13]. Is 
the accuracy of all CCS reads good enough for downstream analysis? 
How much can the accuracy of the CCS reads be improved by applying 
appropriate QC filters? What is the impact of CCS read QC on the 
downstream assembly analysis? To answer these questions, we prepared 
a complex DNA mixture sample with 10 closely related and known 
DNA amplicons, which serves as a standard benchmark dataset. After 
sequencing the mixed DNA sample with the PacBio RS platform, we 
assessed the accuracy of the CCS reads from different angles in order 
to answer the above questions. This study can help analysts understand 
the general characteristics of CCS read accuracy as well as the gain 
and tradeoff of QC filters, in order to appropriately QC CCS reads for 
different study purposes. In addition, the benchmark dataset and QC-
matrix query script in this study are freely available (http://david.abcc.
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Abstract
PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, 

nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads 
produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the 
sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this 
study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing 
platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the 
known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with 
an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to 
evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post 
error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream 
bioinformatics analytical results.
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ncifcrf.gov/manuscripts/pacbio_qc) for researchers to facilitate their 
own QC work.

Materials and Methods
Construction of a pacbio benchmark dataset 

Ten plasmid clones, containing 10 different known Pneumocystis 
jirovecii Major Surface Glycoprotein (MSG) isoforms (sharing 80-90% 
similarity, ~3 kb length) [14], were mixed together in an even amount 
of 1 µl each, as PCR templates. A PCR reaction with a pair of primers 
in the MSG conservative regions amplified a ~1.5 kb mixture product 
of the 10 MSG isoforms in plasmids. The mixed PCR products (for 
sequences see http://david.abcc.ncifcrf.gov/manuscripts/pacbio_qc) 
provide a good control dataset to test the sequencing capability of the 
PacBio RS platform. 

1 µg of the above mixed PCR products were used to construct 
one PacBio DNA library using the PacBio standard 2 kb template 
prep protocol. In addition, the 608-bp DNA fragment consisting of 
a randomly generated sequence, provided in the PacBio library kit, 
was spiked into the true DNA sample as a technical control in the 
PacBio sequencing procedure. Thereafter, the samples were sequenced 
on the PacBio RS platform on a single SMRT Cell (part number 
001‐350‐385). C2 Polymerase (part number 001-672-551) was used 
for the sequencing reaction and ninety-minute movie windows were 
used for signal detection. After raw sequence data was generated, the 
base calling and CCS read generation was done using version 1.3.0 of 
PacBio’s instrument control and SMRT Analysis software (http://www.
pacificbiosciences.com). 10712 CCS reads, including 9812 study CCS 
reads and 900 PacBio spike-in control CCS reads, were obtained from 
the above procedure in FASTA and FASTQ files. Moreover, all PacBio 
sequencing related data was archived in a H5 formatted file for custom 
queries later.

Bioinformatics analysis of the pacbio ccs read accuracy and 
associated qc parameters

To evaluate the accuracy of CCS reads, each of the 9812 study CCS 
reads in the FASTA file were compared to the 10 prior known MSG 
isoform sequences. The comparisons were performed using the NCBI 
standalone BLAST program with default parameters. For a given CCS 
read, the hit with the best BLAST bit score was selected, and then an 
adjusted BLAST identity percentage (ABIP) based on the BLAST result 
(ABIP%=matches/[(matches+mismatches+deletions+insertions+(n
on-aligned bases at the two ends of the CCS read)]) was calculated as 
the final assessment value to represent the global true accuracy of the 
CCS read. When an ABIP value for a given CCS read is less than 95%, 
the CCS read is classified as low quality.

An in-house Perl script (http://david.abcc.ncifcrf.gov/manuscripts/
pacbio_qc) was developed to query the H5 archive file in order to create 
a summary read-QC-parameter report. The script outputs common QC 
values (read length, overall mean  QV), as well as QC parameters (i.e. 
pass #, read Quality Score, read deletion mean QV, read insertion mean 
QV, read substitution mean QV, read minimum mean QV) that are not 
routinely reported in the default output of the SMRT Analysis software. 
These values were summarized in a read-QC-parameter report file for 
this study, containing 9812 CCS read names and the associated QC 
values. To filter and assess the CCS reads with associated QC values, 
the QC-matrix file was analyzed using MS Excel and Partek Genomic 
Suite 6.6.

The assembly pipeline is not in the scope of the discussion in this 

paper. In brief, all of the input CCS reads went through multiple steps 
using the software packages Uclust, Muscle and Sequencher.

The SVM-Based QC strategy

The multiple QC parameters were used in a Support Vector 
Machine (SVM) regression model [15] for training using the 900 CCS 
reads generated from the PacBio spike-in positive control. (http://
david.abcc.ncifcrf.gov/manuscripts/pacbio_qc). One of the advantages 
of the SVM is that it can avoid the difficulties of using linear functions 
in the high dimensional feature space by implicit mapping via kernels. 
For the dataset in this study, we chose a radial basis function (RBF) 
kernel with the default settings [15] to build the model with the training 
set of PacBio spike-in CCS reads in Matlab. The SVM regression model 
was built on two input variables, which are mean Quality Value and 
CCS pass number. We then used it to predict the accuracy of each of the 
9812 non spike-in CCS reads in the same dataset. As a result, each of the 
CCS reads was assigned a predicted accuracy value in the range of 0 to 
100 (percentage value) which was merged into the read-QC-parameter 
report file.

Results
The median accuracy of total CCS reads is 97.5%

In principle, each of the 9812 CCS reads should belong to one of 
the 10 MSG isoform reference sequences. If some are not, there must 
be sequencing errors derived during the course of sample prep, library 
prep and the PacBio sequencing procedure. For a given CCS read, the 
adjusted BLAST identity percentage (ABIP, see method section for 
formula) value to the closest MSG sequence was used to represent the 
global accuracy of the CCS read. The median accuracy (ABIP) value 
of the 9812 CCS reads is 97.5% in this study (Table 1). Importantly, 
the 2.5% error rate may not only come from PacBio sequencing 
procedure, but also from the sample prep (PCR error) and library prep 
procedures. Assuming a threshold of 95% accuracy of CCS reads is 
what assembly programs can tolerate, then ~20.5% of CCS reads are 
below the threshold and thus of low-quality (Figure 1 and Table 1). 
After examining the details of the BLAST alignments, we found that 
sequencing errors frequently occur in the 3’ and 5’ ends while the 
central region usually represents good accuracy, which suggests that the 
PacBio algorithm should more precisely process the two ends. Further 
evidence on this point is that we performed a static 50-bp trimming 
on the two ends of all CCS reads, which subsequently improves the 
CCS read accuracy and assembly quality (Table 1). In addition, adaptor 
sequences and chimeric sequences are also observed in some cases. 
Overall, while a majority (7791) of the 9812 total CCS reads is high-

QC method None 50-bp 
trimmed
at both ends

QV-Based spike-in 
trained SVR

# of CCS reads 
selected

all 9812 all 9812 top 3000 top 5000 top 3000 top 5000

90% percentile of 
read accuracy

99.44% 99.48% 99.62% 99.56% 99.62% 99.56%

50% percentile of 
read accuracy

97.48% 97.63% 99.12% 98.61% 99.12% 98.67%

10% percentile of 
read accuracy

92.98% 93.06% 98.44% 94.56% 98.54% 95.09%

De Novo Assembly: 
# of Contigs

13 (3 FP*) 10* (0 FP) 11 (1 FP) 12 (2 FP) 10 (0 FP) 10 (0 FP)

Note*: final assembled length is 100 bp shorter.
*FP denotes False Positive 
Table 1: A Comparison of read accuracy (ABIP) improvements across three quality 
control (QC) strategies and their impacts on the De Novo assembly results.
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quality, users should be aware that ~20% (2021) low-quality CCS reads 
may need to be filtered (Figure 1). A QC step is necessary to remove 
the problematic CCS reads, otherwise, downstream assembly or other 
bioinformatics analysis might be adversely affected [16,17], such as 
resulting in false positive SNPs, isoforms, or assembly.

The Phred-like quality value can effectively filter low-quality 
reads, but with a tradeoff

PacBio’s software package reports a Phred-like Quality Value (QV) 
for each CCS read, wherein the median QV of the 9812 CCS reads is 31. 
The actual CCS read accuracy (ABIP) and QV have positive correlation, 
particularly for CCS reads with a QV of 40 or greater (Figure 1). 
Therefore, QV, as expected, can be used to filter the problem CCS reads. 
QV cutoffs of 30 or 40 can improve the median accuracy values of CCS 
reads to 98.5% and 99.0% respectively, while ~66.9% and ~77.7% of 
the problem CCS reads (ABIP<95%) can be filtered out. However, the 
tradeoff is that ~38.1% and ~69.2% of the high-quality CCS reads, 
respectively, are also filtered out (Figure 1). Thus, users should be 
particularly careful of the high tradeoff with QV cutoffs of 40 or above, 
even though it can remove more low quality CCS reads. QV-40 is a very 
sensitive threshold because a majority (>73%) of the total CCS reads are 

below QV-40. Overall, QV-30 seems to be a more balanced cutoff line, 
in general, considering the tradeoff [16]. However, there is ~33.1% of 
the problem CCS reads remaining with a cutoff of QV-30. The question 
is whether other QC parameters can be used to improve this situation?

A support vector machine (svm)-based integrative qc strategy

Pass number is a unique feature of the PacBio platform. It 
represents how many rounds the same single-molecule is sequenced 
in a hairpin structure during the PacBio circular sequencing procedure 
[1,2]. Logically, one would presume that a higher number of passes 
can produce more multiple alignment information resulting in better-
quality CCS reads (Figures 2 and 3) however, this relationship is not 
linear. As the pass number gets higher, the increase of the read quality 
value slows down. Actually, the pass number and the read quality value 
(mean QV) are correlated with a coefficient squared value of 0.74. 

There are many different ways to use multiple QC parameters 
to filter the high dimensional data. To simultaneously use the pass 
number and other QC parameters in one single QC step, we built a 
SVM [15] regression model with CCS reads derived from PacBio spike-
in sequences as the training set to predict MSG CCS read accuracy. 
Since the PacBio standard spike-in control DNA and the true sample 
are sequenced at the same time, the quality of the control CCS reads 
can largely represent the entire course of PacBio sequencing procedure, 
i.e., the efficiency of library prep, sample loading, polymerase activity, 
ligase activity, accuracy of fluorescent signal detection, threshold of 
bioinformatics, etc. In this sense, it is a good and universal source as the 
training dataset when a perfectly matched control to the true sample is 
not available. However, this universal control may also have potential 
biases or differences from the true sample, such as differing DNA length 
from that of the true sample and thus, we did not use length as an input 
feature in the SVM.

The advantage of the SVM model is that it allows us to simultaneously 
use the multiple QC parameters in a non-linear space. We used CCS 
pass number and read mean QV as input variables and ABIP as the 
dependent variable associated with PacBio spike-in sequences to train 
the SVM model. The trained SVM model is then used to predict the 
accuracy for each of the CCS reads in the dataset. As a result, each CCS 

 

Figure 1: Read accuracy (ABIP) versus quality value (mean QV). The mean 
QV is correlated with the CCS read accuracy, particularly, at the range of QV-
40 and above. It suggests that QV can be a useful QC parameter to remove 
low-quality CCS reads. However, the plot also shows that the majority of CCS 
reads, including the low-quality CCS reads, are below QV-40. Thus, a QV-40 
cutoff might have a higher tradeoff by removing a large amount of high-quality 
CCS reads. A QV-30 cutoff may be more balanced.
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Figure 2: The distribution of pass number for 9812CCS MSG reads.
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Figure 3: Read quality value (mean QV) vs CCS pass number. As the pass 
number increases the read quality value in general increases, however, the 
correlation is not linear, when the pass number getting higher, the increase of 
the read quality value slows down. (Note: the box plots for pass number greater 
than 15 were not shown in the figure due to insufficient data points).
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read is assigned a SVM predicted accuracy score from 0 to 100 (100 is 
the best score meaning 100% match).These scores were used to select 
better CCS reads for QC purposes.

At this point, there are three QC scenarios: trim 50bp at both 
ends of the read, QV-based QC, and SVM-based QC. To assess the 
effectiveness of the QC methods, we compare their 90%, 50% (median) 
and 10% percentile values of ABIP as shown in Table 1. The comparison 
shows that SVM-based QC, which is a multiple-parameter QC, is more 
effective in improving low end CCS read accuracy in the 10% percentile 
range (Table 1). Figure 4b and Figure 4c illustrate the different QC 
effects for the QV-based method and SVM-based method compared to 
the box plots of read accuracy versus CCS pass number for all 9812 CCS 
reads shown in Figure 4a.

The impact of different qc strategies on the downstream de 
novo assembly 

The ultimate goal of the analysis is the De Novo assembly of the 

CCS reads to generate a number of contigs which should correspond 
to the 10 known given MSG sequences. We use the de novo assembly 
results to evaluate the effectiveness of each of the QC strategies. Five 
CCS read datasets derived from three different QC strategies, 9812 
reads with 50 bp trimmed from both ends, the top 3000 and 5000 CCS 
reads selected by QV-based QC and the top 3000 and 5000 CCS reads 
selected by SVM-based QC scores, in addition to the original data set 
of 9812 MSG reads (without QC), were respectively run through an in-
house de novo assembly pipeline with the exact same program settings. 
Since the assembly analysis is not in the scope of this QC-centric paper, 
we only focus on the assembly results without discussing the details of 
the assembly pipeline. The assembly shows that without QC the original 
9812 reads resulted in 13 contigs, among which 10 matched with the 10 
given MSG sequences and 3 are false positives (FP) (Table 1). The one 
with 50 bp trimmed at both ends for each of the 9812 reads resulted 
in 10 contigs which were 100 bp shorter than each of the matched 10 
MSG sequences. The top 3000 and 5000 QV-selected reads gave 1 and 
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Figure 4: Box plots of CCS read accuracy (ABIP) for different pass numbers. Figure 4a) shows the box plots for all 9812 reads without doing QC, most 
of the outliers denoted by red crosses are low-quality reads;  Figure 4b) shows the box plots for the top 3000 reads ranked by mean QV. The low-
quality reads for pass numbers lower than 7 have significantly been removed but none of those with pass numbers greater than 7 have been removed, 
meanwhile, no reads with a pass number of 2 have been selected and most good reads for low pass number have also been screened out with the high 
mean QV threshold. Figure 4c) Shows the box plots for the top 3000 reads ranked by the predicted accuracy value by SVM. Obviously, most of the 
low-quality reads have been cleaned and all of the reads selected are those with pass numbers less than 9. The two figures 4b) and 4c) illustrate the 
different effects of the two  QC methods due to different ranking mechanisms.
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2 false positives respectively while the top 3000 and 5000 SVM-selected 
reads generated 10 contigs with 0 FP, exactly corresponding to the 10 
MSG reference sequences with high accuracy (~99%). The comparison 
of assembly results indicates that the SVM-based QC, integrating 
multiple-parameters, is useful for more accurate assembly results.

Conclusion
The PacBio benchmark study in this paper demonstrates that PacBio 

targeted amplicon sequencing yields ~20% of total CCS reads in low-
quality. The percentage of low quality CCS reads may be underestimated 
by many optimistic users. Thus, it is very necessary to apply appropriate 
QC filters to remove low-quality CCS reads even though all CCS 
reads are post error-corrected. This study indicates that inefficient or 
no QC could result in some false positive contigs after assembly. A 
combination of multiple QC parameters can be more powerful than 
a single measure alone in order to effectively remove low-quality CCS 
reads. Users should balance tradeoffs by applying an appropriate QC 
stringency depending on their needs of different downstream analysis. 
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